a) Tính \(y = {2^x}\) khi x lần lượt nhận các giá trị - 1; 0; 1. Với mỗi giá trị của x có bao nhiêu giá trị của \(y = {2^x}\) tương ứng?
b) Với những giá trị nào của x, biểu thức có nghĩa?
a) Tính \(y = {2^x}\) khi x lần lượt nhận các giá trị - 1; 0; 1. Với mỗi giá trị của x có bao nhiêu giá trị của \(y = {2^x}\) tương ứng?
b) Với những giá trị nào của x, biểu thức có nghĩa?
Trong các hàm số sau, những hàm số nào là hàm số mũ? Khi đó hãy chỉ ra cơ cố.
a) \(y = {\left( {\sqrt 2 } \right)^x};\)
b) \(y = {2^{ - x}};\)
c) \(y = {8^{\frac{x}{3}}};\)
d) \(y = {x^{ - 2}}.\)
Thảo luận (1)Hướng dẫn giảiba hàm số a,b,c là các hàm số mũ
a: \(y=\left(\sqrt{2}\right)^x\)
Cơ số là \(\sqrt{2}\)
b: \(y=2^{-x}=\left(2^{-1}\right)^x=\left(\dfrac{1}{2}\right)^x\)
Cơ số là 1/2
c: \(y=8^{\dfrac{x}{3}}=\left(\sqrt[3]{8}\right)^x=2^x\)
Cơ số là 2
(Trả lời bởi Nguyễn Lê Phước Thịnh)
Cho hàm số mũ \(y = {2^x}.\)
a) Hoàn thành bảng giá trị sau:
b) Trong mặt phẳng tọa độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; 2x) với \(x \in \mathbb{R}\) và nối lại ta được đồ thị của hàm số
c) Từ đồ thị đã vẽ ở câu b, hãy kết luận về tập giá trị và tính chất biến thiên của hàm số
Thảo luận (1)Hướng dẫn giải
Vẽ đồ thị của hàm số \(y = {\left( {\frac{3}{2}} \right)^x}.\)
Thảo luận (2)Hướng dẫn giải
a) Tính \(y = {\log _2}x\) khi x lần lượt nhận các giá trị 1; 2; 4. Với mỗi giá trị của x > 0 có bao nhiêu giá trị của \(y = {\log _2}x\) tương ứng?
b) Với những giá trị nào của x, biểu thức \(y = {\log _2}x\) có nghĩa?
Thảo luận (1)Hướng dẫn giảia) Với \(x = 1\) thì \(y = {\log _2}1 = 0\)
Với \(x = 2\) thì \(y = {\log _2}2 = 1\)
Với \(x = 4\) thì \(y = {\log _2}4 = 2\)
b) Biểu thức \(y = {\log _2}x\) có nghĩa khi x > 0.
(Trả lời bởi Hà Quang Minh)
Trong các hàm số sau, những hàm số nào là hàm số lôgarit? Khi đó hãy chỉ ra cơ số.
a) \(y = {\log _{\sqrt 3 }}x;\)
b) \(y = {\log _{{2^{ - 2}}}}x;\)
c) \(y = {\log _x}2;\)
d) \(y = {\log _{\frac{1}{x}}}5.\)
Thảo luận (1)Hướng dẫn giảiHàm số a,b là các hàm số logarit
a: \(log_{\sqrt{3}}x\)
Cơ số là \(\sqrt{3}\)
b: \(log_{2^{-2}}x\)
Cơ số là \(2^{-2}=\dfrac{1}{4}\)
(Trả lời bởi Nguyễn Lê Phước Thịnh)
Cho hàm số lôgarit \(y = {\log _2}x.\)
a) Hoàn thành bảng giá trị sau:
b) Trong mặt phẳng tọa độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;{{\log }_2}x} \right)\) với \(x \in \mathbb{R}\) và nối lại ta được đồ thị của hàm số \(y = {\log _2}x\)
c) Từ đồ thị đã vẽ ở câu b, hãy kết luận về tập giá trị và tính chất biến thiên của hàm số \(y = {\log _2}x\)
Thảo luận (1)Hướng dẫn giải
Giải bài toán tình huống mở đầu (kết quả tính theo đơn vị triệu người và làm tròn đến chữ số thập phân thứ hai).
Thảo luận (1)Hướng dẫn giảiTừ 2020 đến 2050 sẽ là 2050-2020=30(năm)
Dân số VN vào năm 2050 sẽ là:
\(97.34\cdot e^{0.91\%\cdot30}\simeq127,90\)(triệu người)
(Trả lời bởi Nguyễn Lê Phước Thịnh)
Vẽ đồ thị của các hàm số sau:
a) \(y = {3^x};\)
b) \(y = {\left( {\frac{1}{3}} \right)^x}.\)
Thảo luận (2)Hướng dẫn giải
Vẽ đồ thị của các hàm số sau:
a) \(y = \log x;\)
b) \(y = {\log _{\frac{1}{3}}}x.\)
Thảo luận (1)Hướng dẫn giải