Bài 2: Đường thẳng trong mặt phẳng tọa độ

Khởi động (SGK Chân trời sáng tạo trang 46-51)

Hướng dẫn giải

+) Hình 1: \(y = 2x + 3 \Rightarrow y - 2x - 3 = 0\)

Vậy \(a =  - 1,b = 1,c =  - 3\)

+) Hình 2: \(y =  - x + 1 \Rightarrow y + x - 1 = 0\)

Vậy \(a = 1,b = 1,c =  - 1\)

+) Hình 3: \(y = 3 \Rightarrow y - 3 = 0\)

Vậy \(a = 0,b = 1,c =  - 3\)

+ Hình 4: \(x =  - 2 \Rightarrow x + 2 = 0\)

Vậy \(a = 1,b = 0,c = 2\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Khám phá 1 (SGK Chân trời sáng tạo trang 46-51)

Hướng dẫn giải

a) Ta có \(\overrightarrow n .\overrightarrow u  = a.b + b.( - a) = 0\)

Tích vô hướng bằng 0 nên hai vectơ \(\overrightarrow n ,\overrightarrow u \)có phương vuông góc với nhau

b) Vectơ \(\overrightarrow {{M_0}M} \) có giá là đường thẳng \(\Delta\)

=> luôn cùng phương với vectơ \(\overrightarrow u \)

=> vectơ \(\overrightarrow {{M_0}M} \) có phương vuông góc với vectơ \(\overrightarrow n \)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Khám phá 2 (SGK Chân trời sáng tạo trang 46-51)

Hướng dẫn giải

\({\overrightarrow {MM} _0} = \left( {{x_0} - x;{y_0} - y} \right)\) mà \(\Delta \) nhận \({\overrightarrow {MM} _0}\)làm vectơ chỉ phương nên ta có:

\(\left\{ \begin{array}{l}{x_0} - x = {u_1}\\{y_0} - y = {u_2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = {x_0} - {u_1}\\y = {y_0} - {u_2}\end{array} \right.\)

Vậy \(M\left( {{x_0} - {u_1};{y_0} - {u_2}} \right)\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thực hành 1 (SGK Chân trời sáng tạo trang 46-51)

Hướng dẫn giải

a) Phương trình tham số của đường thẳng \(d:\left\{ \begin{array}{l}x =  - 9 + 8t\\y = 5 - 4t\end{array} \right.\)

b) Thay \(y = 1\) vào phương trình \(y = 5 - 4t\) ta được \(1 = 5 - 4t \Rightarrow t = 1\)

Thay \(t = 1\) vào phương trình \(x =  - 9 + 8t\), ta được \(x =  - 1\)

Vậy \(P( - 1;1)\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng 1 (SGK Chân trời sáng tạo trang 46-51)

Hướng dẫn giải

a) Phương trình tham số của đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 40t\\y = 1 + 30t\end{array} \right.\)

b) Thay \(t = 2\) vào phương trình\(d:\left\{ \begin{array}{l}x = 1 + 40t\\y = 1 + 30t\end{array} \right.\)  ta được \(\left\{ \begin{array}{l}x = 1 + 40.2 = 81\\y = 1 + 30.2 = 61\end{array} \right.\)

Vậy khi \(t = 2\) thì tọa độ của ô tô là \(\left( {81;61} \right)\)

Thay \(t = 4\) vào phương trình\(d:\left\{ \begin{array}{l}x = 1 + 40t\\y = 1 + 30t\end{array} \right.\)  ta được \(\left\{ \begin{array}{l}x = 1 + 40.4 = 161\\y = 1 + 30.4 = 121\end{array} \right.\)

Vậy khi \(t = 4\) thì tọa độ của ô tô là \(\left( {161;121} \right)\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Khám phá 3 (SGK Chân trời sáng tạo trang 46-51)

Hướng dẫn giải

\(\Delta \) nhận vectơ \(\overrightarrow n  = \left( {a;b} \right)\) làm vectơ pháp tuyến, suy ra vectơ chỉ phương của \(\Delta \) là \(\overrightarrow u  = (b; - a)\)

và \({M_0}\) thuộc đường thẳng \(\Delta \) nên \(\Delta \) nhận \({\overrightarrow {MM} _0}\)làm vectơ chỉ phương

\({\overrightarrow {MM} _0} = \left( {{x_0} - x;{y_0} - y} \right)\), suy ra \(\left\{ \begin{array}{l}{x_0} - x = b\\{y_0} - y =  - a\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = {x_0} - b\\y = {y_0} + a\end{array} \right.\)

Suy ra \(M\left( {{x_0} - {u_1};{y_0} - {u_2}} \right)\)

Thay tọa độ điểm vào phương trình \(ax + by + c = 0\) ta có:

\(a\left( {{x_0} - b} \right) + b\left( {{y_0} + a} \right) + c = \left( { - ab + ba} \right) + \left( {a{x_0} + b{y_0} + c} \right) = 0\)      (đúng vì \( - a{x_0} - b{y_0} = c\))

Vậy \(M(x;y)\) thỏa mãn phương trình đã cho

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thực hành 2 (SGK Chân trời sáng tạo trang 46-51)

Hướng dẫn giải

a) Đường thẳng \(\Delta \) có vectơ pháp tuyến \(\overrightarrow n  = \left( {3;5} \right)\) nên có vectơ chỉ phương \(\overrightarrow u  = \left( {5; - 3} \right)\), nên ta có phương trình tham số của \(\Delta \) là :

 \(\left\{ \begin{array}{l}x = 1 + 5t\\y = 1 - 3t\end{array} \right.\)

Đường thẳng \(\Delta \) đi qua điểm \(A(1;1)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left( {3;5} \right)\)

Phương trình tổng quát của đường thẳng là:

\(3(x - 1) + 5(y - 1) = 0 \Leftrightarrow 3x + 5y - 8 = 0\)

b) Đường thẳng \(\Delta \) đi qua gốc tọa độ \(O(0;0)\)và có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 7} \right)\), nên có phương trình tham số là:

\(\left\{ \begin{array}{l}x = 2t\\y =  - 7t\end{array} \right.\)

Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 7} \right)\),nên có vectơ pháp tuyền là \(\overrightarrow n  = \left( {7;2} \right)\) và đi qua \(O(0;0)\)

Ta có phương trình tổng quát là

\(7(x - 0) + 2(y - 0) = 0 \Leftrightarrow 7x + 2y = 0\)

c) Đường thẳng \(\Delta \) đi qua hai điểm \(M(4;0),N(0;3)\) nên có vectơ chỉ phương \(\overrightarrow u  = \overrightarrow {MN}  = ( - 4;3)\) và có vectơ pháp tuyến \(\overrightarrow n  = (3;4)\)

Phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x = 4 - 4t\\y = 3t\end{array} \right.\)

Phương trình tổng quát của \(\Delta \) là: \(3(x - 4) + 4(x - 0) = 0 \Leftrightarrow 3x + 4y - 12 = 0\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng 2 (SGK Chân trời sáng tạo trang 46-51)

Hướng dẫn giải

a) Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow v  = \left( {3; - 4} \right)\),nên có vectơ pháp tuyền là \(\overrightarrow n  = \left( {4;3} \right)\) và đi qua \(A(1;2)\)

Ta có phương trình tổng quát là

\(4(x - 1) + 3(y - 2) = 0 \Leftrightarrow 4x + 3y - 10 = 0\)

b) Điểm M thuộc trục hoành nên tung độ bằng 0

Thay \(y = 0\) vào phương trình \(4x + 3y - 10 = 0\) ta tìm được \(x = \frac{5}{2}\)

Vậy \(\Delta \) cắt trục hoành tại điểm \(M\left( {\frac{5}{2};0} \right)\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thực hành 3 (SGK Chân trời sáng tạo trang 46-51)

Hướng dẫn giải

a) Ta có \(3x + 5y - 8 = 0 \Leftrightarrow y = \frac{8}{5} - \frac{3}{5}x\)

Vậy hàm số bậc ứng với đường thẳng \(3x + 5y - 8 = 0\) là \(y = \frac{8}{5} - \frac{3}{5}x\)

b) Ta có \(7x + 2y = 0 \Leftrightarrow y =  - \frac{7}{2}x\)

Vậy hàm số bậc ứng với đường thẳng \(7x + 2y = 0\) là \(y =  - \frac{7}{2}x\)

c) Ta có \(3x + 4y - 12 = 0 \Leftrightarrow y = 3 - \frac{3}{4}x\)

Vậy hàm số bậc ứng với đường thẳng \(3x + 4y - 12 = 0\) là \(y = 3 - \frac{3}{4}x\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng 3 (SGK Chân trời sáng tạo trang 46-51)

Hướng dẫn giải

a) Thể tích nước trong bể được tính bằng công thức \(y = 5 + 2x\)

b)                         

 

c) Ta có đồ thị hàm số bậc nhất \(y = 5 + 2x \Leftrightarrow 2x - y + 5 = 0\)

Vậy phương trình tổng quát của đường thẳng là \(2x - y + 5 = 0\)

Từ phương trình tổng quát ta có vectơ pháp tuyến \(\overrightarrow n  = \left( {2; - 1} \right)\), từ đó ta có vectơ chỉ phương \(\overrightarrow u  = (1;2)\)

Khi \(x = 0\) thì \(y = 5\) nên đường thẳng đó đi qua điểm \((0;5)\)

Ta có phương trình tham số của đường thẳng là \(\left\{ \begin{array}{l}x = t\\y = 5 + 2t\end{array} \right.\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)