Một vât dịch chuyển từ A đến B và tiếp tục dịch chuyển từ B đến C (Hình 49).
a) Biểu diễn vecto dịch chuyển của vật từ A đến B và từ B đến C.
b) Xác định vecto dịch chuyển tổng hợp của vật.
Một vât dịch chuyển từ A đến B và tiếp tục dịch chuyển từ B đến C (Hình 49).
a) Biểu diễn vecto dịch chuyển của vật từ A đến B và từ B đến C.
b) Xác định vecto dịch chuyển tổng hợp của vật.
Cho hai vecto \(\overrightarrow a ,\overrightarrow b \). Lấy một điểm A tùy ý.
a) Vẽ \(\overrightarrow {AB} = a\), \(\overrightarrow {BC} = b\)
b) Tổng của hai vecto \(\overrightarrow a \) và \(\overrightarrow b \)bằng vecto nào?
Thảo luận (1)Hướng dẫn giảia) Gọi M, N lần lượt là điểm đầu và điểm cuối của vecto \(\overrightarrow a \).
Vì \(\overrightarrow a = \overrightarrow {AB} \Leftrightarrow \overrightarrow {MN} = \overrightarrow {AB} \) nên tứ giác MNBA là hình bình hành.
Nói cách khác B là đỉnh thứ tư của hình bình hành tạo bởi vecto \(\overrightarrow a \) và điểm A.
Tương tự, C là đỉnh thứ tư của hình bình hành tạo bởi vecto \(\overrightarrow b \) và điểm B.
b) Dễ thấy: tổng của hai vecto \(\overrightarrow {AB} \) và \(\overrightarrow {BC} \) là vecto \(\overrightarrow {AC} \).
Do đó tổng của hai vecto \(\overrightarrow a \) và \(\overrightarrow b \)bằng vecto \(\overrightarrow {AC} \).
Ta có viết: \(\overrightarrow a + \overrightarrow b = \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)
(Trả lời bởi Hà Quang Minh)
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh \(\overrightarrow {PB} + \overrightarrow {MC} = \overrightarrow {AN} \)
Thảo luận (1)Hướng dẫn giảiDo M, N, P lần lượt là trung điểm của BC, CA, AB
\( \Rightarrow MN = \frac{{AB}}{2} = PB\) và MN // PB.
\( \Rightarrow \overrightarrow {PB} = \overrightarrow {NM} \)
Ta có: \(\overrightarrow {PB} + \overrightarrow {MC} = \overrightarrow {NM} + \overrightarrow {MC} = \overrightarrow {NC} \)
Lại có: \(\overrightarrow {NC} = \overrightarrow {AN} \) (do N là trung điểm của AC)
Vậy \(\overrightarrow {PB} + \overrightarrow {MC} = \overrightarrow {AN} \)
(Trả lời bởi Hà Quang Minh)
Cho ABCD là hình bình hành (Hình 52). So sánh:
a) Hai vecto \(\overrightarrow {AD} \) và \(\overrightarrow {BC} \).
b) Vecto tổng \(\overrightarrow {AB} + \overrightarrow {AD} \) và vecto \(\overrightarrow {AC} \)
Thảo luận (1)Hướng dẫn giảia) Ta có: \(\left\{ \begin{array}{l}AD//BC\\AD = BC\end{array} \right.\) (do tứ giác ABCD là hình bình hành)
\( \Rightarrow \overrightarrow {AD} = \overrightarrow {BC} \)
b) Ta có: \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)
(Trả lời bởi Hà Quang Minh)
Hãy giải thích hướng đi của thuyền ở Hình 48.
Thảo luận (1)Hướng dẫn giảiGọi vecto \(\overrightarrow {AB} ,\overrightarrow {AD} \) là các vecto biểu diễn lực mà hai người cùng tác động lên điểm A của thuyền.
Khi đó thuyền chịu một lực là tổng hai lực kéo đó.
Vậy thuyền đi theo hướng của vecto tổng \(\overrightarrow {AB} + \overrightarrow {AD} \)
Vẽ hình bình hành ABCD. Khi đo ta có: \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
Vậy khi hai người cùng kéo, thuyền đi theo vecto đường chéo của hình bình hành tạo bởi hai lực kéo của hai người.
(Trả lời bởi Hà Quang Minh)
Cho hình bình hành ABCD và điểm E bất kì. Chứng minh: \(\overrightarrow {AB} + \overrightarrow {CE} + \overrightarrow {AD} = \overrightarrow {AE} \).
Thảo luận (1)Hướng dẫn giảiTa có: \(\overrightarrow {AB} + \overrightarrow {CE} + \overrightarrow {AD} = (\overrightarrow {AB} + \overrightarrow {AD} ) + \overrightarrow {CE} \) (tính chất giao hoán)
Mà theo quy tắc hình bình hành ta có: \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
Suy ra \(\overrightarrow {AB} + \overrightarrow {CE} + \overrightarrow {AD} = \overrightarrow {AC} + \overrightarrow {CE} = \overrightarrow {AE} \)
Vậy \(\overrightarrow {AB} + \overrightarrow {CE} + \overrightarrow {AD} = \overrightarrow {AE} \) với điểm E bất kì.
(Trả lời bởi Hà Quang Minh)
Trong Hình 54, hai ròng rọc có trục quay nằm ngang và song song với nhau, hai vật có trọng lượng bằng nahu. Mỗi dây có một đầu buộc vào vật, một đầu buộc vào một mảnh nhựa cứng. Hai vật lần lượt tác động lên mảng nhựa các lực \(\overrightarrow {{F_1}} ,\;\overrightarrow {{F_2}} .\) Nhận xét về hướng và độ dài của mỗi cặp vecto sau:
a) \(\overrightarrow {{P_1}} \) và \(\overrightarrow {{P_2}} \) biểu diễn trọng lực của hai vật
b) \(\overrightarrow {{F_1}} \) và \(\;\overrightarrow {{F_2}} .\)
(Bỏ qua trọng lượng các dây và các lực ma sát).
Thảo luận (1)Hướng dẫn giảia) Trọng lực của hai vật đều hướng xuống, vuông góc với mặt đất, đo dó chúng cùng phương, cùng hướng với nhau.
Hơn nữa: Công thức tính độ lớn trọng lực là: \(P = mg\).
Hai vật có khối lượng như nhau, do đó \({P_1} = {P_2}\)
Vậy \(\overrightarrow {{P_1}} = \overrightarrow {{P_2}} \)
b) Do trọng lực tạo thành lực kéo lên mảnh nhựa nên độ lớn của các lực \(\overrightarrow {{F_1}} ,\;\overrightarrow {{F_2}} \) là như nhau.
Chúng có hướng ngược nhau.
(Trả lời bởi Hà Quang Minh)
Cho hai vecto \(\overrightarrow a \),\(\overrightarrow b \). Lấy một điểm M tùy ý.
a) Vẽ \(\overrightarrow {MA} = \overrightarrow a ,\;\overrightarrow {MB} = \overrightarrow b ,\;\overrightarrow {MC} = - \overrightarrow b \) (Hình 56)
b) Tổng của hai vecto \(\overrightarrow a \) và \(( - \overrightarrow b )\) bằng vecto nào?
Thảo luận (1)Hướng dẫn giảia) Đặt D, E lần lượt là điểm đầu và điểm cuối của vecto \(\overrightarrow a \).
Ta có: \(\overrightarrow {MA} = \overrightarrow a \)hay \(\overrightarrow {MA} = \overrightarrow {DE} \)
\( \Leftrightarrow MAED\) là hình bình hành.
Do đó A là đỉnh thứ tư của hình bình hành tạo bởi vecto \(\overrightarrow a \)và điểm M.
Tương tự ta có:
B là đỉnh thứ tư của hình bình hành tạo bởi vecto \(\overrightarrow b \)và điểm M.
Lại có: \(\overrightarrow {MC} = - \overrightarrow b = - \overrightarrow {MB} \) do đó \(MC = MB\) và hai vecto \(\overrightarrow {MB} ,\overrightarrow {MC} \) ngược hướng nhau.
Hay M là trung điểm đoạn thẳng BC.
b) Lấy N là đỉnh thứ tư của hình bình hành AMCN.
Khi đó ta có: \(\overrightarrow {MA} + \overrightarrow {MC} = \overrightarrow {MN} \)
Mà: \(\overrightarrow {MA} = \overrightarrow a ;\;\overrightarrow {MC} = - \overrightarrow b \)
\( \Rightarrow \overrightarrow a + ( - \overrightarrow b ) = \overrightarrow {MN} \).
(Trả lời bởi Hà Quang Minh)
Cho tam giác ABC có M là trung điểm AC, N là trung điểm BC và AB = a. Tính độ dài vecto \(\overrightarrow {CM} - \overrightarrow {NB} \).
Thảo luận (1)Hướng dẫn giảiTa có: \(\overrightarrow {NB} \) và \(\overrightarrow {NC} \) là hai vecto đối nhau (do N là trung điểm của BC)
\( \Rightarrow \overrightarrow {NC} = - \overrightarrow {NB} \)
Do đó: \(\overrightarrow {CM} - \overrightarrow {NB} = \overrightarrow {CM} + \overrightarrow {NC} = \overrightarrow {NC} + \overrightarrow {CM} \)(tính chất giáo hoán)
\( \Rightarrow \overrightarrow {CM} - \overrightarrow {NB} = \overrightarrow {NM} \Leftrightarrow \;|\overrightarrow {CM} - \overrightarrow {NB} |\, = \;|\overrightarrow {NM} | = NM.\)
Vì: M, N lần lượt là trung điểm của AC, BC nên \(MN = \frac{1}{2}AB = \frac{a}{2}.\)
Vậy \(\;|\overrightarrow {CM} - \overrightarrow {NB} |\, = \frac{a}{2}.\)
(Trả lời bởi Hà Quang Minh)
Cho ba điểm M, N, P. Vecto \(\overrightarrow u = \overrightarrow {NP} + \overrightarrow {MN} \) bằng vecto nào sau đây?
A. \(\overrightarrow {PN} \)
B. \(\overrightarrow {PM} \)
C. \(\overrightarrow {MP} \)
D. \(\overrightarrow {NM} \)
Thảo luận (1)Hướng dẫn giảiVận dụng tính chất giao hoán ta có: \[\overrightarrow u = \overrightarrow {NP} + \overrightarrow {MN} = \overrightarrow {MN} + \overrightarrow {NP} = \overrightarrow {MP} \]
Chọn C.
(Trả lời bởi Hà Quang Minh)