(a) + Ta có : \(OB=OC=R\Rightarrow O\) thuộc đường trung trực của \(BC.\)
Do \(I\) là tâm đường tròn nội tiếp \(\Delta ABC\) nên \(AI\) hay \(AD\) là đường phân giác của
\(\hat{BAC}\Rightarrow\hat{BAD}=\hat{DAC}\Rightarrow\stackrel\frown{BD}=\stackrel\frown{CD}\) (các góc nội tiếp bằng nhau chắn các cung bằng nhau) \(\Rightarrow BD=CD\Rightarrow D\) thuộc đường trung trực của \(BC\).
Từ đó, suy ra \(OD\) là đường trung trực của \(BC\Rightarrow OD\perp BC\) (đpcm).
+ Ta có : \(\hat{DBC}=\hat{DAC}=\hat{BAD}\) (hai góc nội tiếp cùng chắn cung \(CD\) và chứng minh trên). Mà : \(\hat{ABI}=\hat{IBC}\) (do \(I\) là tâm đường tròn nội tiếp \(\Delta ABC\Rightarrow BI\) là phân giác của \(\hat{ABC}\)).
Ta sẽ có được : \(\hat{DBC}+\hat{IBC}=\hat{BAD}+\hat{ABI}\)
\(\Leftrightarrow\hat{IBD}=\hat{BID}\) (\(\hat{BID}\) là góc ngoài của \(\Delta ABI\))
\(\Rightarrow\Delta IBD\) cân tại \(D\) (đpcm).
(b) Xét \(\Delta PAD,\Delta DTR:\) \(\left\{{}\begin{matrix}\hat{PDA}=\hat{TDR}=90^o\left(gt\right)\\\hat{PAD}=\hat{DRT}\end{matrix}\right.\) (cùng phụ với \(\hat{HTA}=\hat{DTR}\) (đối đỉnh))
\(\Rightarrow\Delta PAD\sim\Delta DTR\left(g.g\right)\Leftrightarrow\dfrac{PD}{DT}=\dfrac{AD}{DR}\Leftrightarrow DT.DA=PD.DR\left(1\right).\)
Xét \(\Delta DBT,\Delta DAB:\left\{{}\begin{matrix}\hat{ADB}\text{ chung}\\\hat{DBT}=\hat{DAB}\left(=\hat{BAD}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta DBT\sim\Delta DAB\left(g.g\right)\Leftrightarrow\dfrac{DT}{DB}=\dfrac{DB}{DA}\Leftrightarrow DB^2=DT.DA\left(2\right).\)
Từ \(\left(1\right),\left(2\right)\Rightarrow PD.DR=DB^2=DI^2\) (\(\Delta IDB\) cân tại \(D\left(cmt\right)\Rightarrow DB=DI\)) \(\Leftrightarrow\dfrac{PD}{DI}=\dfrac{DI}{DR}\).
Xét \(\Delta PDI,\Delta IDR:\left\{{}\begin{matrix}\dfrac{PD}{DI}=\dfrac{DI}{DR}\left(cmt\right)\\\hat{PDI}=\hat{IDR}=90^o\end{matrix}\right.\)
\(\Rightarrow\Delta PDI\sim\Delta IDR\left(c.g.c\right)\Leftrightarrow\hat{IPD}=\hat{DIR}\).
Lại có trong \(\Delta IDP\) vuông tại \(D\) : \(\hat{IPD}+\hat{PID}=90^o\) (hai góc phụ nhau), suy ra : \(\hat{DIR}+\hat{PID}=90^o=\hat{PIR}\)
Vậy : \(IP\perp IR\) (đpcm).
