Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Quoc Cuong
Xem chi tiết
Thằng Gầy Lắc Lư
Xem chi tiết
Phan Tiến Nhật
Xem chi tiết
hoa do
29 tháng 7 2019 lúc 11:15

heyzo tv

hoa do
30 tháng 7 2019 lúc 20:45

ủa cháu ghi lộn thành lớp 1, sự thật là cháu lớp 4 ròi    ahihi  :D

vuong nguyen
Xem chi tiết
Tuấn Nguyễn
28 tháng 1 2019 lúc 20:53

Đặt x = 2a; y = -5b.

Áp dụng đẳng thức Bunhiacopski ta có:

\(\left(3x+y\right)^2\le\left(x^2+y^2\right)\left(9+1\right)\Rightarrow x^2+y^2\ge\frac{1}{10}\)

Hay: \(4a^2+25b^2\ge\frac{1}{10}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{3}{x}=\frac{1}{y}\Leftrightarrow3y=x\Leftrightarrow-15b=2a\Leftrightarrow6a=-45b\)

\(\Leftrightarrow b=-\frac{1}{50};a=\frac{3}{20}\)

dia fic
Xem chi tiết
Akai Haruma
2 tháng 1 2021 lúc 15:07

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(H^2=(6a-5b)^2\leq [(2a)^2+(-5b)^2](3^2+1^2)=10(4a^2+25b^2)\)

\(\leq 10.10=100\)

\(\Rightarrow H\leq 10\)

Vậy $H_{\max}=10$. Giá trị này đạt tại \(\left\{\begin{matrix} 4a^2+25b^2=10\\ \frac{2a}{3}=-\frac{5b}{1}\end{matrix}\right.\Leftrightarrow x=\frac{3}{2}; y=-\frac{1}{5}\)

Nguyễn Thị Sao Mai
Xem chi tiết
Ngu Ngu Ngu
21 tháng 4 2017 lúc 18:37

Đặt \(x=2a;y=-5b\)

Áp dụng BĐT Bunhiacôpxki ta có:

\(\left(x^2+y^2\right)\left(9+1\right)\ge\left(3x+y\right)^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{\left(3x+y\right)^2}{10}=\frac{\left(6a-5b\right)^2}{10}=\frac{1}{10}\)

Dấu "=" xảy ra khi \(\frac{3}{x}=\frac{1}{y}\Leftrightarrow\hept{\begin{cases}a=\frac{3}{20}\\b=\frac{-1}{50}\end{cases}}\)

Vậy GTNN của \(4a^2+25b^2=\frac{1}{10}\) tại \(\Leftrightarrow\hept{\begin{cases}a=\frac{3}{20}\\b=\frac{-1}{50}\end{cases}}\)

Su kem
Xem chi tiết
minh trần lê
7 tháng 10 2018 lúc 20:45

6a - 5b = 1 | 60 - 50 = 10 vậy chỉ có a là 0 | b là 9 

4a2 + 25b2 = 402 + 2592 = 1.600 + 67.081 = 68.681

vậy cho nên giá trị nhỏ nhất của 4a2 + 25b2 là 

                                           68.681

Đào Trọng Phú
Xem chi tiết
Trần Lùn 3
1 tháng 2 2017 lúc 14:22

tích mình trước ik , mình sẽ giải qua tin nhắn  cho !

Đỗ Thị Hải Yến
Xem chi tiết
alibaba nguyễn
15 tháng 2 2017 lúc 10:33

c/ Ta có:\(6a-5b=1\)

\(\Rightarrow5b=6a-1\)

Theo đề thì: \(A=4a^2+\left(6a-1\right)^2=40a^2-12a+1\)

\(=\left(\left(2\sqrt{10}a\right)^2-\frac{2.2.\sqrt{10}.3a}{\sqrt{10}}+\frac{9}{10}\right)+\frac{1}{10}\)

\(=\left(2\sqrt{10}a-\frac{3}{\sqrt{10}}\right)^2+\frac{1}{10}\ge\frac{1}{10}\)

Đỗ Thị Hải Yến
15 tháng 2 2017 lúc 12:28

còn câu a,b nữa a ơi :((