Cho 6a-5b=1 tìm min 4a^2+25b^2
Cho 6a - 5b = 1. Tìm Min 4a2+25b2
cho 6a - 5b = 1 tìm min P = 4a2 + 25b2
Cho 6a-5b=1. Tìm GTNN của 4a^2+25b^2
cho 6a -5b =1 .tìm giá trị nhỏ nhất của 4a^2+25b^2
Đặt x = 2a; y = -5b.
Áp dụng đẳng thức Bunhiacopski ta có:
\(\left(3x+y\right)^2\le\left(x^2+y^2\right)\left(9+1\right)\Rightarrow x^2+y^2\ge\frac{1}{10}\)
Hay: \(4a^2+25b^2\ge\frac{1}{10}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{3}{x}=\frac{1}{y}\Leftrightarrow3y=x\Leftrightarrow-15b=2a\Leftrightarrow6a=-45b\)
\(\Leftrightarrow b=-\frac{1}{50};a=\frac{3}{20}\)
cho \(4a^2+25b^2\le10\). tìm GTLN của \(H=6a-5b\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(H^2=(6a-5b)^2\leq [(2a)^2+(-5b)^2](3^2+1^2)=10(4a^2+25b^2)\)
\(\leq 10.10=100\)
\(\Rightarrow H\leq 10\)
Vậy $H_{\max}=10$. Giá trị này đạt tại \(\left\{\begin{matrix} 4a^2+25b^2=10\\ \frac{2a}{3}=-\frac{5b}{1}\end{matrix}\right.\Leftrightarrow x=\frac{3}{2}; y=-\frac{1}{5}\)
Cho 6a-5b=1. Tìm GTNN của\(4a^2+25b^2\)
Đặt \(x=2a;y=-5b\)
Áp dụng BĐT Bunhiacôpxki ta có:
\(\left(x^2+y^2\right)\left(9+1\right)\ge\left(3x+y\right)^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{\left(3x+y\right)^2}{10}=\frac{\left(6a-5b\right)^2}{10}=\frac{1}{10}\)
Dấu "=" xảy ra khi \(\frac{3}{x}=\frac{1}{y}\Leftrightarrow\hept{\begin{cases}a=\frac{3}{20}\\b=\frac{-1}{50}\end{cases}}\)
Vậy GTNN của \(4a^2+25b^2=\frac{1}{10}\) tại \(\Leftrightarrow\hept{\begin{cases}a=\frac{3}{20}\\b=\frac{-1}{50}\end{cases}}\)
cho 6a - 5b = 1. tìm giá trị nhỏ nhất của 4a2 + 25b2
6a - 5b = 1 | 60 - 50 = 10 vậy chỉ có a là 0 | b là 9
4a2 + 25b2 = 402 + 2592 = 1.600 + 67.081 = 68.681
vậy cho nên giá trị nhỏ nhất của 4a2 + 25b2 là
68.681
ai giỏi toán giúp mk
6a - 5b = 1
Tìm giá trị nhỏ nhất của 4a^2+25b^2
tích mình trước ik , mình sẽ giải qua tin nhắn cho !
a) Tìm GTNN: 2x^2+3y^2+4xy-8x-2y+18
b) Cho a-b= 1. Chứng minh: a^2+b^2 lớn hơn hoặc bằng 1/2
c) Cho 6a-5b=1. Tìm GTNN của A= 4a^2 + 25b^2
c/ Ta có:\(6a-5b=1\)
\(\Rightarrow5b=6a-1\)
Theo đề thì: \(A=4a^2+\left(6a-1\right)^2=40a^2-12a+1\)
\(=\left(\left(2\sqrt{10}a\right)^2-\frac{2.2.\sqrt{10}.3a}{\sqrt{10}}+\frac{9}{10}\right)+\frac{1}{10}\)
\(=\left(2\sqrt{10}a-\frac{3}{\sqrt{10}}\right)^2+\frac{1}{10}\ge\frac{1}{10}\)