Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Phúc Thuận
Xem chi tiết
Nguyễn Lê Nhật Linh
Xem chi tiết
Trần Thị Kim Ngân
25 tháng 5 2017 lúc 18:07

\(5x^2+8y^2=20412\)

Vì \(8y^2⋮2\)và \(20412⋮2\)\(\rightarrow5x^2⋮2\rightarrow x^2⋮2\rightarrow x⋮2.\)

Đặt \(x=2k\left(k\in Z\right)\), ta có:

\(5\times4k^2+8y^2=20412\)

\(\leftrightarrow5k^2+2y^2=5103\)

Vì \(5103\)lẻ và \(2y^2\)chẵn nên \(5k^2\)lẻ \(\rightarrow k\)lẻ.

      +) Nếu \(y\) chẵn thì \(2y^2⋮4\)nên \(5103\)và \(5k^2\)có cùng số dư khi chia cho\(4\)

         Ta thấy \(5103\div4\)dư \(3\)thì \(5k^2\div4\)dư \(3\)\(\rightarrow k^2\div4\) dư \(3\).

         Vô lý, một số chính phương chia cho \(4\) chỉ có thể dư \(0\)hoặc\(1\).

       +) Nếu\(y\)lẻ thì \(y^2\)chỉ có tận cùng là \(1,5,9\)nên \(2y^2\)có tận cùng là \(2,0,8\)

          mà \(5k^2\)có tận cùng là 5 \(\rightarrow\)\(y^2\)có tận cùng là \(9\)

          \(\rightarrow y\)có tận cùng là\(3,7\)

Thử bằng máy tính cầm tay với các giá trị của \(y=3,13,23,33,43,7,17,27,37,47\)ta tìm được \(y=27\)thỏa mãn

\(\rightarrow k=27\rightarrow x=54\)

Vậy phương trình có nghiệm nghuyên là \(\left(x;y\right)=\left(54;27\right)\)

ILoveMath
Xem chi tiết
Akai Haruma
26 tháng 11 2021 lúc 21:58

1. 

PT $\Leftrightarrow 4x^2-4xy+4y^2-16=0$

$\Leftrightarrow (2x-y)^2+3y^2=16$

$\Rightarrow 3y^2=16-(2x-y)^2\leq 16$

$\Rightarrow y^2\leq \frac{16}{3}< 9$

$\Rightarrow -3< y< 3$

Mà $y$ nguyên nên $y\in \left\{-2;-1;0;1;2\right\}$

Thay vô ta tìm được:

$(x,y)=(-2, -2), (0,-2), (0,2), (2,0), (-2,0)$

2.

PT $\Leftrightarrow 13y^2=20412$

$\Leftrightarrow y^2=\frac{20412}{13}\not\in\mathbb{N}$ (vô lý)

oOo Min min oOo
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 11 2021 lúc 17:18

\(2,\\ PT\Leftrightarrow6x^2+9y^2-\left(x^2+y^2\right)=20412\\ \text{Mà }20412⋮3;6x^2+9y^2⋮3\\ \Leftrightarrow x^2+y^2⋮3\Leftrightarrow x^2⋮3;y^2⋮3\Leftrightarrow x⋮3;y⋮3\)

Đặt \(\left\{{}\begin{matrix}x=3a\\y=3b\end{matrix}\right.\left(a,b\in Z\right)\Leftrightarrow5\left(3a\right)^2+8\left(3b\right)^2=20412\)

\(\Leftrightarrow9\left(5a^2+8b^2\right)=20412\\ \Leftrightarrow5a^2+8b^2=2268\)

Mà \(2268⋮3\Leftrightarrow5a^2+8b^2⋮3\Leftrightarrow a^2⋮3;b^2⋮3\Leftrightarrow a⋮3;b⋮3\)

Đặt \(\left\{{}\begin{matrix}a=3c\\b=3d\end{matrix}\right.\left(c,d\in Z\right)\Leftrightarrow9\left(5c^2+8d^2\right)=2268\Leftrightarrow5c^2+8d^2=252\)

Mà \(252⋮3\Leftrightarrow5c^2+8d^2⋮3\Leftrightarrow c^2⋮3;d^2⋮3\Leftrightarrow c⋮3;d⋮3\)

Đặt \(\left\{{}\begin{matrix}c=3k\\d=3q\end{matrix}\right.\left(k,q\in Z\right)\Leftrightarrow9\left(5k^2+8q^2\right)=252\Leftrightarrow5k^2+8q^2=28\)

\(\Leftrightarrow5k^2=28-8q^2\ge0\Leftrightarrow q^2\le\dfrac{28}{8}=3,5\\ \text{Mà }q\in Z\\ \Leftrightarrow-3\le q^2\le3\Leftrightarrow-1\le q\le1\)

\(\forall q=0\Leftrightarrow k^2=\dfrac{28}{5}\left(ktm\right)\\ \forall q=\pm1\Leftrightarrow k=\pm2\\ \Leftrightarrow\left(c;d\right)=\left(6;3\right);\left(-6;-3\right);\left(-6;3\right);\left(6;-3\right)\\ \Leftrightarrow\left(a;b\right)=\left(18;9\right)\left(-18;-9\right);\left(-18;9\right);\left(18;-9\right)\\ \Leftrightarrow\left(x;y\right)=\left(54;27\right);\left(-54;-27\right);\left(54;-27\right);\left(-54;27\right)\)

Big City Boy
Xem chi tiết
Thu Thao
10 tháng 1 2021 lúc 15:03

\(\Leftrightarrow x^2+4y^2+4xy-2\left(x+2y\right)+1=5-4y^2\)

\(\Leftrightarrow\left(x+2y+1\right)^2=5-4y^2\)

TH1 : \(4y^2=0\)

Pt \(\Leftrightarrow\left(x+2y+1\right)^2=5\)Mà 5 không là số chính phương.

=> Không có số nguyên x nào thỏa mãn.

TH2 : \(4y^2>0\)

Do \(\left(x+2y+1\right)^2\ge0\Rightarrow5\ge4y^2\)

Mà y nguyên

=> \(4y^{2}=4\)

=> y ∈ {1 ; -1}

Với y = 1

=> x + 3 = 1

=> x = -2 (tm)Với y = -1

=> x - 1 = 1

=> x = 2 (tm)Vậy..

Lê Phương Trà
Xem chi tiết
Nguyễn Linh Chi
21 tháng 3 2020 lúc 18:09

Ta có: \(9x^2-8y^2=15⋮3\)

=> \(8y^2⋮3\)=> \(y^2⋮3\)=> \(y⋮3\)

Đặt y = 3 t ( t là số nguyên )

ta có: \(9x^2-8.9t^2=15\)

=> \(15=9x^2-8.9t^2⋮9\) vô lí

Vậy không tồn tại cặp số nguyên x; y.

Khách vãng lai đã xóa
Lê Thị Ngọc Duyên
Xem chi tiết
Nguyễn Trần Duy Thiệu
Xem chi tiết