1) TÌM CÁC CẶP SỐ NGUYÊN X VÀ Y BIẾT :
a) ( x + 1 )(y - 2)=0
b)(x+3)(y-6)= -4
c) xy + 5x =4
tìm các cặp số nguyên x,y biết
a,(x+1)(y+3)=0
b,(x-5)(y-6)=-5
c,xy+5x=-7
a, Vì (x + 1) (y +3) = 0
nên x + 1 = 0 hoặc y + 3 = 0
+ Nếu x + 1 = 0 thì x = -1
+ Nếu y + 3 = 0 thì y = -3
Vậy x = -1; y = -3
b, Vì (x - 5) (y - 6) = - 5
nên x - 5 và y - 6 thuộc Ư(-5) = {1; 5; -1; -5}
Ta có bảng sau:
x - 5 | 1 | 5 | -1 | -5 |
y - 6 | -5 | -1 | 5 | 1 |
x | 6 | 10 | 4 | 0 |
y | 1 | 5 | 11 | 7 |
Vậy nếu x = 6 thì y = 1
x = 10 thì y = 5
x = 4 thì y = 11
x = 0 thì y = 7
c, xy + 5x = -7
x (y + 5) = -7
Vậy x và y- 5 thuộc Ư(-7) = {1; 7; -1; -7}
Ta có bảng sau:
x | 1 | -1 | 7 | -7 |
y - 5 | -7 | 7 | -1 | 1 |
y | -2 | 12 | 4 | 6 |
Vậy nếu x = 1 thì y = -2
x = -1 thì y = 12
x = 7 thì y = 4
x = -7 thì y = 6
a ) ( x + 1 ) ( y + 3 ) = 0
=> \(\orbr{\begin{cases}x+1=0\\y+3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0-1=-1\\y=0-3=-3\end{cases}}\)
a, ( x + 1 )( y + 3 ) = 0
=> x + 1 = 0 hoặc y + 3 = 0
Nếu x + 1 = 0
x = 0 - 1 = -1
Nếu y + 3 =0
y = 0 - 3 = -3
Vậy x = -1 và y = -3
Tìm các cặp số (x;y) nguyên thoả mãn:
a) |x - 3y| + |y + 4| = 0
b) |x - y - 5| + ( y + 3 ) ²
c) |x + y - 1| + ( y - 2)^4 = 0
d) |x + 3y - 1| + 3.| y + 2|= 0
e) |2021 - x| + 2y - 2022| = 0
\(a,\left\{{}\begin{matrix}\left|x-3y\right|\ge0\\\left|y+4\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3y=-12\\y=-4\end{matrix}\right.\)
\(b,Sửa:\left|x-y-5\right|+\left(y+3\right)^2=0\\ \left\{{}\begin{matrix}\left|x-y-5\right|\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y-5=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+5=2\\y=-3\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}\left|x+y-1\right|\ge0\\\left(y-2\right)^4\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y=-1\\y=2\end{matrix}\right.\)
\(d,\left\{{}\begin{matrix}\left|x+3y-1\right|\ge0\\3\left|y+2\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-3y=7\\y=-2\end{matrix}\right.\)
\(e,Sửa:\left|2021-x\right|+\left|2y-2022\right|=0\\ \left\{{}\begin{matrix}\left|2021-x\right|\ge0\\\left|2y-2022\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2021-x=0\\2y-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\y=1011\end{matrix}\right.\)
Tìm các số nguyên x,y biết
a) xy+3x-2y-6=5
b) 5x+2y-xy=16
c) x+y=3 và x-y=15
d) |x|+|y|=1
a.
xy + 3x - 2y - 6 = 5
=>x(y + 3) - 2(y + 3) = 5
=>(x - 2)(y + 3) = 5.
Vì x, y thuộc Z nên x - 2, y + 3 thuộc Z
=> x - 2, y + 3 thuộc ước nguyên của 5
Lập bảng :
x - 2 | -5 | -1 | 1 | 5 |
y + 3 | -1 | -5 | 5 | 1 |
x | -3 | 1 | 3 | 7 |
y | -4 | -8 | 2 | -2 |
Vậy ......
b. Làm tương tự câu a.
c. Ta có x + y = 3 và x - y = 15
Bài này là tổng hiệu của cấp 1, áp dụng cách làm đó thì ta được số lớn là x = (3 + 15) : 2 = 9
Số bé là y = 9 - 15 = -6
d. Ta có : |x| + |y| = 1
=>|x| = 1 - |y|
Vì |x|, |y| >= 0 và |x| = 1 - |y| nên 0 =< |x|, |y| =< 1
Vì x, y thuộc Z nên x = 0 thì y = 1 hoặc -1 và ngược lại y = 0 thì x = 1 hoặc -1
bài 1:
a) Tìm các cẶP số nguyên x; y thỏa mãn hệ thức: ( 2x - 1 ) (y + 4 ) = 11
b) Tìm các giá trị x;y nguyên thỏa mãn: xy = 3y - 5x = 9
11=1x11=11x1=-1x-11=-11x-1
TH1:
2x-1=1 y+4=11
2x=2 y=7
x=1
TH2:
2x-1=11 y+4=1
2x=12 y=-5
x=6
TH3:
2x-1=-1 y+4=-11
2x=-2 y=-15
x=-1
TH4:
2x-1=-11 y+4=-1
2x=-10 y=-5
x=-5
a)(2x-1)(y+4)=11
Ta có:11=1.11=11.1=(-1).(-11)=(-11).(-1)
Do đó ta có bảng sau:
y+4 | -11 | -1 | 1 | 11 |
2x-1 | -1 | -11 | 11 | 1 |
2x | 0 | -10 | 12 | 2 |
x | 0 | -5 | 6 | 1 |
y | -15 | -5 | -3 | 7 |
Vậy các cặp (x;y) TM là:(0;-15)(-5;-5)(6;-3)(1;7)
BÀi 1:Tìm các cặp số nguyên x,y biết 2x2+y2+xy=2(x+y)
Bài 2:Tìm các cặp số nguyên dương x,y biết x2+y2=3(x+y)
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
Bài 3: Tìm x, y €Z sao cho:
a. |x + 25| + |-y + 5| = 0
b. |x - 1| + |x – y + 5|≤ 0
c. |6 – 2x| + |x - 13| = 0
d. |x| + |y + 1| = 0
e. |x| + |y| = 2
f. |x| + |y| = 1
g. x.y = - 28
h. (2x - 1).(4y + 2) = - 42
i. x + xy + y = 9
j. xy – 2x – 3y = 5
k. (5x + 1).(y - 1) = 4
l. xy – 5x + y = 7
giúp mình với chiều mình học rồi
a) |x + 25| + |-y + 5| =0
=> |x + 25| = 0 hoặc |-y + 5| = 0
Từ đó bạn cứ bỏ giá trị tuyệt đối rồi tính nha! Mấy bài khác cũng vậy
a) Tìm x: |x-1| + |x-3| =4
b) tìm cặp (x,y) với x,y là các số nguyên thỏa mãn :xy+3x-y=6
a) Tìm x: |x-1| + |x-3| =4
b) tìm cặp (x,y) với x,y là các số nguyên thỏa mãn :xy+3x-y=6
TH1: \(x\le1\)
pt <=> 1-x+3-x=4 <=> 4-2x=4 <=> 2x=0 <=> x=0 (tmđk)
TH2: \(1< x\le3\)
pt <=> x-1+3-x=4 <=> 2=4 vô lý!
TH3: x > 3
pt <=> x-1+x-3=4 <=> 2x-4=4 <=> 2x=8 <=> x=4 (đpcm)
Vậy x=0 và x=4
\(xy+3x-y=6\Leftrightarrow\left(xy+3x\right)-\left(y+3\right)=3\Leftrightarrow x\left(y+3\right)-\left(y+3\right)=3\)
\(\Leftrightarrow\left(x+1\right)\left(y+3\right)=3\)
Ta có bảng sau:
x+1 | -3 | -1 | 1 | 3 |
y+3 | -1 | -3 | 3 | 1 |
x | -4 | -2 | 0 | 2 |
y | -2 | -6 | 0 | -2 |
Vậy có 4 cặp số x;y thỏa mãn là...
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)