Biết a/a' + b'/b = 1
b/b' + c'/c = 1
c/m a.b.c+a'.b'.c'=0
biết a/a'+b/b'=1
b/b'+c/c'=1
chứng minh rằng a.b.c+a'.b'.c'=0
\(\frac{a}{a'}+\frac{b}{b'}=1;\frac{b}{b'}+\frac{c}{c'}=1\)
=> a/a'=c/c'
Biết a/m + n/b = 1; b/n + p/c =1. CMR: a.b.c + m.n.p = 0
biết a/a'+b/b'=1
b/b'+c/c'=1
chứng minh rằng a.b.c+a'.b'.c'=0
biết a/a'+b'/b=1
b/b'+c'/c=1
chứng minh rằng a.b.c+a'.b'.c'=0
biết a/a'+b'/b=1
b/b'+c'/c=1
chứng minh rằng a.b.c+a'.b'.c'=0
\(\frac{a}{a'}+\frac{b'}{b}=1\)=> \(\frac{a}{a'}.\frac{b}{b'}+\frac{b'}{b}.\frac{b}{b'}=\frac{b}{b'}\)=> \(\frac{ab}{a'b'}+1=\frac{b}{b'}=1-\frac{c'}{c}\)
=> \(\frac{ab}{a'b'}=-\frac{c'}{c}\)=> abc = - a'b'c' => abc + a'b'c' = 0
chua hoc phan nay nen cug cha bt giai luon
a/a' + b'/b = 1 <=> ab + a'b' = a'b <=> abc + a'b'c = a'bc (1) (vì c # 0)
b/b' + c'/c = 1 <=> bc + b'c' = b'c <=> a'bc + a'b'c' = a'b'c (2) (vì a' # 0)
(1) + (2) => đpcm
biết a/a'+b'/b=1
b/b'+c'/c=1
chứng minh rằng a.b.c+a'.b'.c'=0
Biết a/a'+b'/b=1
b/b'+c'/c=1
CMR a.b.c+a'.b'.c'=0
\(\dfrac{a}{a'}+\dfrac{b'}{b}=1\Rightarrow\dfrac{a}{a'}\cdot\dfrac{b}{b'}+\dfrac{b'}{b}\cdot\dfrac{b}{b'}=\dfrac{b}{b'}\Rightarrow\dfrac{ab}{a'b'}+1=\dfrac{b}{b'}\left(1\right)\)
\(\dfrac{b}{b'}+\dfrac{c'}{c}=1\Rightarrow\dfrac{b}{b'}=1-\dfrac{c'}{c}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\dfrac{ab}{a'b'}=-\dfrac{c'}{c}\Rightarrow abc=-a'b'c'\Rightarrow abc+a'b'c'=0\)
Vậy \(abc+a'b'c'=0\left(dpcm\right)\)
Biết a/m+n/b=1; b/n+p/c=1 . Chứng minh rằng: a.b.c + m.n.p = 0
Cho a.b.c khác 0 và (a + b - c)/c = (b + c - a)/a = (c + a - b)/ b.
Tính A = (1 + b/a).(1 + c/b).(1 + a/c)