Tìm abcde, biết :
\(\overline{abcde}\cdot9=\overline{edcba}\).
\(\overline{abcde}\) * 9=\(\overline{edcba}\)
tìm \(\overline{abcde}\)
tìm \(\overline{abcde}\) biết \(\overline{abcde}\) = 2.\(\overline{ab}\).\(\overline{cde}\)
Đáp án:
hoặc
Giải thích các bước giải:
Do
nhỏ nhất là
Ước dương của
Do lẻ và
Vậy số thoả mãn là hoặc
Tìm số tự nhiên \(\overline{abcde}\) biết rằng \(\overline{abcde}=a.b.c.d.e.45\)
Bạn vào https://olm.vn/hoi-dap/detail/3121636268.html
Bài 1: Tìm \(\overline{abcde}\), biết
1) \(\sqrt{\overline{abcde}}\) = 5e + 1
2) \(\sqrt{\overline{abcde}}\) = \(\left(ab\right)^3\)
Bài 2: Cho a, b>0: \(a^{2012}\)+ \(b^{2012}\) = \(a^{2013}\)+\(b^{2013}\)=\(a^{2014}\)+\(b^{2014}\)
Bài 3: Tìm a, b, c: a.( a + b + c ) = \(-\dfrac{1}{24}\)
c.( a + b + c ) = \(-\dfrac{1}{72}\)
b.( a + b + c ) = \(\dfrac{1}{16}\)
(cứu mih với ạ uhuhuhu)
Bài 3.
\(\left\{{}\begin{matrix}a\left(a+b+c\right)=-\dfrac{1}{24}\left(1\right)\\c\left(a+b+c\right)=-\dfrac{1}{72}\left(2\right)\\b\left(a+b+c\right)=\dfrac{1}{16}\left(3\right)\end{matrix}\right.\)
Dễ thấy \(a,b,c\ne0\Rightarrow a+b+c\ne0\)
Chia (1) cho (2), ta được \(\dfrac{a}{c}=3\Rightarrow a=3c\left(4\right)\)
Chia (2) cho (3) ta được: \(\dfrac{c}{b}=-\dfrac{2}{9}\Rightarrow b=-\dfrac{9}{2}c\left(5\right)\).
Thay (4), (5) vào (2), ta được: \(-\dfrac{1}{2}c^2=-\dfrac{1}{72}\)
\(\Rightarrow c=\pm\dfrac{1}{6}\).
Với \(c=\dfrac{1}{6}\Rightarrow\left\{{}\begin{matrix}a=3c=\dfrac{1}{2}\\b=-\dfrac{9}{2}c=-\dfrac{3}{4}\end{matrix}\right.\)
Với \(c=-\dfrac{1}{6}\Rightarrow\left\{{}\begin{matrix}a=3c=-\dfrac{1}{2}\\b=-\dfrac{9}{2}c=\dfrac{3}{4}\end{matrix}\right.\)
Vậy: \(\left(a;b;c\right)=\left\{\left(\dfrac{1}{2};-\dfrac{3}{4};\dfrac{1}{6}\right);\left(-\dfrac{1}{2};\dfrac{3}{4};-\dfrac{1}{6}\right)\right\}\)
Tìm \(\overline{abcde}\)biết \(\overline{abcde}=a\times b\times c\times d\times e\times45\)
Gọi số cần tìm là (abcde); đ/k: 0<a,b,c,d,e < 9 theo bài ra ta có:
(abcde) = 45 x a x b x c x d x e
=> (abcde) phải là số chia hết cho 5 (bởi vì tích có thừa số 5).
=> e = 0 (loại) hoặc e = 5 (thoả mãn); a,b,c,d,e đều là số lẻ (*1)
* Mặt khác ta lại có: (a,b,c,d,e) = (abc) x 100 + (de)
=> (abc) x 100 + (de) = 45 x a x b x c x 5 = 9 x 5 x 5 x a x b x c = 9 x 25 x a x b x c.
=> (de) hay (d5) phải là số chia hết cho 25 => chỉ có (de) = 75 thoả mãn
* Mặt khác: 10000 < (abcd) < 99999
=> 10000< 45 x a x b x c x 7 x 5 < 99999 => 6 < a x b x c < 64 (*2)
(abcde) phải là số chia hết cho 9 (Vì (abcde) = 5x9 x a x b x c x 7 x 5)
=> a+b+c+d+e = a+b+c+7+5 phải chia hết cho 9
=> a+b+c = 6 (loại) hoặc 15 (thoả mãn)hoặc 24 (loại) (đối chiếu với đk a,b,c đều lẻ (*1))
Vậy a+b+c = 15 => a,b,c là một trong các bộ chữ số sau: (7,7,1); (1,5,9); (3,3,9);(3,6,7);(5,5,5). Đối chiếu với điều kiện (*2) ở trên => Chỉ có (7,7,1) thoả mãn hay a=7; b=7; c = 1.
Vậy số cần tìm là: 77175
tk nha, thanks
\(\overline{abcde}=a\cdot b\cdot c\cdot d\cdot e\cdot45\)\(\overline{abcde}=a\cdot b\cdot c\cdot d\cdot e\cdot45\)tìm \(\overline{abcde}\)
viết đề thấy không rõ
Cho số tự nhiên có 5 chữ số \(\overline{abcde}\)sao cho \(\overline{abcde}=\left(\overline{ab}\right)^3\)
a)CMR: \(20< \overline{ab}< 40\)
b) Tìm \(\overline{abcde}\)
tìm \(\overline{abcde}\) biết rằng \(\overline{abcd}=\left(\overline{ab}\right)^3\)
Không sử dụng máy tính cầm tay , hãy tìm số \(\overline{abcde}\) biết \(\sqrt[3]{\overline{abcde}}=\overline{ab}\)
Ta có: \(10000\le\overline{abcde}\le99999\Rightarrow22\le\sqrt[3]{\overline{abcde}}\le46\Leftrightarrow22\le\overline{ab}\le46\Rightarrow22000\le\overline{abcde}\le46999\Rightarrow29\le\sqrt[3]{\overline{abcde}}\le36\Rightarrow29\le\overline{ab}\le36\Rightarrow29000\le\overline{abcde}\le36999\Rightarrow31\le\sqrt[3]{\overline{abcde}}\le33\Rightarrow31\le\overline{ab}\le33\Rightarrow31000\le\overline{abcde\le33999\Rightarrow32\le\sqrt[3]{abcde}\le32\Rightarrow\overline{ab}=32\Rightarrow\overline{abcde}=32768}\)
Vậy,....