cho x,y,z khacs0 thỏa mãn x^4=y^2.z^2=x^2.z^2 tính P=(x+y).(y+z).(z+x)/x.y.z
cho x,y,z khác 0 thỏa mãn 3x+y+z/x = x+3y+z/y = x+y+3z/z. Tính M= (x+y).(y+z).(z+y)/x.y.z
kkgkirtgkjssykjhskfsrlhklruwo8tiyfieusykdkwirkuiufysoiiyi
Tích trên có số thừa số:
(2012 - 2) : 10 + 1 = 202 (thừa số)
Cứ 4 thừa số thì đem lại cho ta tích có tận cùng là 6.
Mà 202 : 4 = 50 (dư 2)
Khi đó:
(2 x 12 x 22 x 32) x ... x (1962 x 1972 x 1982 x 1992) x 2002 x 2012
Vậy tận cùng của tích là: 6x2x2 có tận cùng là 4.
Câu 2:
Gọi ba số phải tìm là x,y,z
Ta có: x + y + z = 321,95 và 3x = 4y = 5z
Từ 3x = 4y = 5z
Cho ta:
x(13)=y(14)=z(15)=(x+y+z)(13+14...)x(13)=y(14)=z(15)=(x+y+z)(13+14...)(dãy tỉ số bằng nhau)
Do đó: x(13)=411→x=137x(13)=411→x=137
y = 102,75
z = 82,2
Vậy, .....
bay tào lao nhề phải là !@#$%^^*&&^^%^$##@!@#$$%
thế mới ngon lành độc lạ ko đụng hàng
cmr: không tồn tại x, y, z thỏa mãn x^2 + y^2 + z^2 = x.y.z - 1
Cho x,y,z thỏa mãn :{x+y+z=0,x^2+y^2+z^2=14. tính B= x^4+y^4+z^4
https://olm.vn/hoi-dap/detail/68409793765.html
Bạn tham khảo ở đây.
cho x, y, z thỏa mãn hệ phương trình
\(\hept{\begin{cases}x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{cases}}\)
Tính giá trị biểu thức P=x.y.z
Ta có \(x^2+y^2+z^2=1\) \(\Rightarrow\hept{\begin{cases}x^2\le1\\y^2\le1\\z^2\le1\end{cases}}\)
\(\Rightarrow-1\le x,y,z\le1\) (*)
Lấy pt sau trừ pt trước ta được \(x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)=0\)
Mà từ (*) ta suy ra \(\hept{\begin{cases}x^2\left(x-1\right)\ge0\\y^2\left(y-1\right)\ge0\\z^2\left(z-1\right)\ge0\end{cases}}\)
Do vậy dấu "=" chỉ xảy ra khi \(x^2\left(x-1\right)=y^2\left(y-1\right)=z^2\left(z-1\right)=0\)
Xảy ra 4 trường hợp :
+ TH1 : Nếu x = y = z = 0 => \(x^2+y^2+z^2=x^3+y^3+z^3=0\ne1\)không thỏa mãn - loại
+ TH2 : Nếu \(x=y=z=1\)=> \(x^2+y^2+z^2=x^3+y^3+z^3=3\ne1\)không thỏa mãn - loại
+ TH3 : Nếu hai trong bộ ba số (x;y;z) nhận giá trị là 1 và số còn lại nhận giá trị bằng 0 thì \(x^2+y^2+z^2=x^3+y^3+z^3=2\ne1\) không thỏa mãn - loại
+ TH4 : Nếu hai trong bộ ba số (x;y;z) nhận giá trị là 0 và số còn lại nhận giá trị bằng 1 thì :
\(x^2+y^2+z^2=x^3+y^3+z^3=1\) thỏa mãn - nhận
Do trong ba số này vai trò của x,y,z là bình đẳng nên ta có thể chọn x = y = 0 , z = 1
=> xyz = 0 => P = 0
Cho x,y,z >0 thỏa mãn x+1/y=y+1/z=z+1/x
Tính P=x.y.z
Cho x,y,z ≠ 0 thỏa mãn: 2(x+y) = 3(y+z) = 4(x+z)
Tính P = \(\dfrac{x}{y}\)+\(\dfrac{y}{z}\)+\(\dfrac{z}{x}\)
cho x,y,z khác 0 thỏa mãn: 2( x+y)= 3(y+z)=4(z+x) tính
P= \(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)
Lời giải:
$2(x+y)=3(y+z)=4(x+z)$
$\Rightarrow \frac{x+y}{6}=\frac{y+z}{4}=\frac{x+z}{3}$ (chia cả 3 vế cho $12$)
Đặt giá trị trên là $t$
$\Rightarrow x+y=6t; y+z=4t; z+x=3t$
$\Rightarrow x+y+z=(6t+4t+3t):2=6,5t$
$x=6,5t-4t=2,5t; y=6,5t-3t=3,5t; z=6,5t-6t=0,5t$. Khi đó:
$P=\frac{2,5t}{3,5t}+\frac{3,5t}{0,5t}+\frac{0,5t}{2,5t}$
$=\frac{2,5}{3,5}+\frac{3,5}{0,5}+\frac{0,5}{2,5}=\frac{277}{35}$
Cho x,y,z thỏa mãn đk x/(y+z)+y/(x+z)+z/(x+y)=1
Tính giá trị của S=x^2/(y+z)+y^2/(x+z)+z^2/(x+y)
\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\Leftrightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=x+y+z\)
<=>\(\frac{x^2+x\left(y+z\right)}{y+z}+\frac{y^2+y\left(z+x\right)}{z+x}+\frac{z^2+z\left(x+y\right)}{x+y}=x+y+z\)
<=>\(\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)
<=>\(S=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=0\)
x/(y+z)+y/(x+z)+z/(x+y)=1
=>\(\frac{x^2}{\left(y+z\right)^2}\)+\(\frac{y^2}{\left(x+z\right)^2}\)+\(\frac{z^2}{\left(x+y\right)^2}\)+2(\(\frac{xy}{\left(y+z\right)\cdot\left(x+z\right)}\)+\(\frac{yz}{\left(x+z\right)\left(x+y\right)}\)+\(\frac{zx}{\left(z+y\right)\cdot\left(x+y\right)}\))=1
cho x,y,z là các số thực dương thỏa mãn x,y,z>0 thỏa mãn x(x-z)+y(y-z) =0 tìm GTNN của \(P=\frac{x^3}{x^2+z^2}+\frac{y^3}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)