Rút gọn biểu thức $A=(3\sqrt{11}+3).\sqrt{108-18\sqrt{11}}$A=(3√11+3).√108−18√11
Rút gọn biểu thức P=\(\frac{2\sqrt{6}+\sqrt{3}+4\sqrt{2}+3}{\sqrt{11+2\left(\sqrt{6}+\sqrt{12}+\sqrt{18}\right)}}\)
Rút gọn biểu thức
a) \(2\sqrt{28}+\sqrt{63}-\sqrt{112}\)
b) \(3\sqrt{48}-5\sqrt{108}+6\sqrt{\dfrac{1}{3}}\)
`a)2\sqrt{28}+\sqrt{63}-\sqrt{112}`
`=4\sqrt{7}+3\sqrt{7}-4\sqrt{7}`
`=3\sqrt{7}`.
`b)3\sqrt{48}-5\sqrt{108}+6\sqrt{1/3}`
`=12\sqrt{3}-30\sqrt{3}+2\sqrt{[3^2]/3}`
`=-18\sqrt{3}+2\sqrt{3}`
`=-16\sqrt{3}`.
Rút gọn:
\(a.\left(\sqrt{95}-\sqrt{18}-\sqrt{11}\right).\sqrt{11}+3\sqrt{22}\)
\(\left(\sqrt{95}-\sqrt{18}-\sqrt{11}\right).\sqrt{11}+3\sqrt{22}\)
\(=\sqrt{95}.\sqrt{11}-\sqrt{9.2}.\sqrt{11}-\sqrt{11}.\sqrt{11}+\sqrt{9}.\sqrt{2.11}\)
\(=\sqrt{1045}-11\)
\(\left(\sqrt{95}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(=\sqrt{1045}-3\sqrt{22}-11+3\sqrt{22}=\sqrt{1045}-11\)
giải trên symbolab.com í
chú ý: simplify = rút gọn
thực hiện phép tính ( rút gọn biểu thức )
a) \(\left(\dfrac{3+2\sqrt{3}}{\sqrt{3}+2}-\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
b) \(\left(2+\dfrac{11-\sqrt{11}}{1-\sqrt{11}}\right)\left(2+\dfrac{\sqrt{11}+11}{\sqrt{11}+1}\right)\)
a)
\(\left(\dfrac{3+2\sqrt{3}}{\sqrt{3}+2}-\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\right)\left(\sqrt{3}+\sqrt{2}\right)\\ =\left(\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\left(\sqrt{3}+2\right)}-\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\left(\sqrt{2}+1\right)}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\\ =3-2\\ =1\)
b)
\(\left(2+\dfrac{11-\sqrt{11}}{1-\sqrt{11}}\right)\left(2+\dfrac{\sqrt{11}+11}{\sqrt{11}+1}\right)\\ =\left(2+\dfrac{\sqrt{11}\left(\sqrt{11}-1\right)}{-\left(\sqrt{11}-1\right)}\right)\left(2+\dfrac{\sqrt{11}\left(1+\sqrt{11}\right)}{\sqrt{11}+1}\right)\\ =\left(2-\sqrt{11}\right)\left(2+\sqrt{11}\right)\\ =4-11\\ =-7\)
a: \(=\left(\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{2+\sqrt{3}}-\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
=(căn 3-căn 2)(căn 3+căn 2)
=3-2=1
b: \(=\left(2-\dfrac{\sqrt{11}\left(\sqrt{11}-1\right)}{\sqrt{11}-1}\right)\left(2+\dfrac{\sqrt{11}\left(\sqrt{11}+1\right)}{\sqrt{11}+1}\right)\)
=(2-căn 11)(2+căn 11)
=4-11
=-7
Rút gọn biểu thức
1) \(\sqrt{6\sqrt{2}+11}\) - \(\sqrt{11-6\sqrt{2}}\)
2) (\(\sqrt{3}\) - 2)\(\sqrt{7+4\sqrt{3}}\)
1: =3+căn 2-3+căn 2
=2căn 2
2: =(căn 3-2)(căn 3+2)
=3-4=-1
Thực hiện phép tính (rút gọn biểu thức)
a) \(\sqrt{9+4\sqrt{5}}\) - \(\sqrt{9-4\sqrt{5}}\)
b) \(\sqrt{12-6\sqrt{3}}\) + \(\sqrt{12+6\sqrt{3}}\)
c) \(\sqrt{6\sqrt{2}+11}\) - \(\sqrt{11-6\sqrt{2}}\)
Lời giải:
a.
\(=\sqrt{5+2.2\sqrt{5}+2^2}-\sqrt{5-2.2\sqrt{5}+2^2}\)
$=\sqrt{(\sqrt{5}+2)^2}-\sqrt{(\sqrt{5}-2)^2}$
$=|\sqrt{5}+2|-|\sqrt{5}-2|=(\sqrt{5}+2)-(\sqrt{5}-2)=4$
b.
$=\sqrt{3-2.3\sqrt{3}+3^2}+\sqrt{3+2.3.\sqrt{3}+3^2}$
$=\sqrt{(\sqrt{3}-3)^2}+\sqrt{(\sqrt{3}+3)^2}$
$=|\sqrt{3}-3|+|\sqrt{3}+3|$
$=(3-\sqrt{3})+(\sqrt{3}+3)=6$
c.
$=\sqrt{2+2.3\sqrt{2}+3^2}-\sqrt{2-2.3\sqrt{2}+3^2}$
$=\sqrt{(\sqrt{2}+3)^2}-\sqrt{(\sqrt{2}-3)^2}$
$=|\sqrt{2}+3|-|\sqrt{2}-3|$
$=(\sqrt{2}+3)-(3-\sqrt{2})=2\sqrt{2}$
Rút gọn các biểu thức :
a) \(\left(2\sqrt{3}+\sqrt{5}\right)\sqrt{3}-\sqrt{60}\)
b) \(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)
c) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
d) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
a) \(\left(2\sqrt{3}+\sqrt{5}\right)\sqrt{3}-\sqrt{60}\) = \(6+\sqrt{15}-2\sqrt{15}\)
= \(6-\sqrt{15}\)
b) \(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\) = \(5\sqrt{10}+10-5\sqrt{10}\) = \(10\)
c) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\) = \(14-2\sqrt{21}-7+2\sqrt{21}\)
= \(7\)
d) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
= \(33-3\sqrt{22}-11+3\sqrt{22}\) = \(22\)
a)(2√3+√5)√3-√60
=6+√15-2√15
=6-√15
b)(5√2+2√5)√5-√250
=5√10+10-5√10
=10
c)(√28-√12-√7)√7+2√21
=14-2√21-7+2√21
=7
d)(√99-√18-√11)√11+3√22
=33-3√22-11+3√22
=22
rút gọn biểu thức sau
a,\(5\sqrt{48}-4\sqrt{27}-2\sqrt{57}+\sqrt{108}\)
b,\(2\sqrt{24}-2\sqrt{54}+3\sqrt{6}-\sqrt{150}\)
a) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{57}+\sqrt{108}\)
\(=20\sqrt{3}-12\sqrt{3}-2\sqrt{57}+6\sqrt{3}\)
\(=\left(20-12+6\right)\sqrt{3}-2\sqrt{57}\)
\(=14\sqrt{3}-2\sqrt{57}\)
b) \(2\sqrt{24}-2\sqrt{54}+3\sqrt{6}-\sqrt{150}\)
\(=4\sqrt{6}-6\sqrt{6}+3\sqrt{6}-5\sqrt{6}\)
\(=\left(4-6+3-5\right)\sqrt{6}\)
\(=-4\sqrt{6}\)
rút gọn biểu thức: \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)và B=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{11\sqrt{x}-3}{x-9}\)vs x≥0;x≠9
rút gọn biểu thức M=A+B
Ta có: M=A+B
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{11\sqrt{x}-3}{x-9}\)
\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)