Rút gọn các biểu thức sau:
a) \(\sqrt{\left(2-\sqrt{5}\right)^2}\); b) \(\sqrt{a^2}+\sqrt{\left(-3a\right)^2}\) với a > 0.
Khai triển và rút gọn các biểu thức sau:
a) \({\left( {2 + \sqrt 2 } \right)^4}\)
b) \({\left( {2 + \sqrt 2 } \right)^4} + {\left( {2 - \sqrt 2 } \right)^4}\)
c) \({\left( {1 - \sqrt 3 } \right)^5}\)
a) Áp dụng công thức nhị thức Newton, ta có
\(\begin{array}{l}{\left( {2 + \sqrt 2 } \right)^4} = {2^4} + {4.2^3}.\left( {\sqrt 2 } \right) + {6.2^2}.{\left( {\sqrt 2 } \right)^2} + 4.2.{\left( {\sqrt 2 } \right)^3} + {\left( {\sqrt 2 } \right)^4}\\ = \left[ {{2^4} + {{6.2}^2}.{{\left( {\sqrt 2 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^4}} \right] + \left[ {{{4.2}^3}.\left( {\sqrt 2 } \right) + 4.2.{{\left( {\sqrt 2 } \right)}^3}} \right]\\ = 68 + 48\sqrt 2 \end{array}\)
b) Áp dụng công thức nhị thức Newton, ta có
\({\left( {2 + \sqrt 2 } \right)^4} = {2^4} + {4.2^3}.\left( {\sqrt 2 } \right) + {6.2^2}.{\left( {\sqrt 2 } \right)^2} + 4.2.{\left( {\sqrt 2 } \right)^3} + {\left( {\sqrt 2 } \right)^4}\)
\({\left( {2 - \sqrt 2 } \right)^4} = \left( {2 +(- \sqrt 2 )} \right)^4= {2^4} + {4.2^3}.\left( { - \sqrt 2 } \right) + {6.2^2}.{\left( { - \sqrt 2 } \right)^2} + 4.2.{\left( { - \sqrt 2 } \right)^3} + {\left( { - \sqrt 2 } \right)^4}\)
Từ đó,
\(\begin{array}{l}{\left( {2 + \sqrt 2 } \right)^4} + {\left( {2 - \sqrt 2 } \right)^4} = 2\left[ {{2^4} + {{6.2}^2}.{{\left( {\sqrt 2 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^4}} \right]\\ = 2\left( {16 + 48 + 4} \right) = 136\end{array}\)
c) Áp dụng công thức nhị thức Newton, ta có
\(\begin{array}{l}{\left( {1 - \sqrt 3 } \right)^5} = \left( {1 +(- \sqrt 3 )} \right)^5= 1 + 5.\left( { - \sqrt 3 } \right) + 10.{\left( { - \sqrt 3 } \right)^2} + 10.{\left( { - \sqrt 3 } \right)^3} + 5.{\left( { - \sqrt 3 } \right)^4} + 1.{\left( { - \sqrt 3 } \right)^5}\\ = \left[ {1 + 10.{{\left( { - \sqrt 3 } \right)}^2} + 5.{{\left( { - \sqrt 3 } \right)}^4}} \right] + \left[ {5.\left( { - \sqrt 3 } \right) + 10.{{\left( { - \sqrt 3 } \right)}^3} + 1.{{\left( { - \sqrt 3 } \right)}^5}} \right]\\ = 76 - 44\sqrt 3 \end{array}\)
rút gọn các biểu thức sau:
a) \(\sqrt{\left(2-\sqrt{3}\right)^2}\)
b) \(\sqrt{\left(3-\sqrt{11}\right)^2}\)
c) \(2\sqrt{a^2}\)với a ≥ 0
d) 3\(\sqrt{\left(a-2\right)^2}\)với a < 0
\(a,=\left|2-\sqrt{3}\right|=2-\sqrt{3}\\ b,=\left|3-\sqrt{11}\right|=\sqrt{11}-3\\ c,=2\left|a\right|=2a\\ d,=3\left|a-2\right|=3\left(2-a\right)\left(a< 0\Leftrightarrow a-2< 0\right)\)
Câu 1: Rút gọn biểu thức sau:
a.\(\sqrt{36\left(x-5\right)^2}\)
b. \(\sqrt{\dfrac{1}{4}\left(1-x\right)^2}\)
c.\(\sqrt{x^2\left(2x-4\right)^2}\)
a) \(\sqrt{36\left(x-5\right)^2}=6\left|x-5\right|\)
\(=6\left(x-5\right)\) (khi \(x\ge5\))
hoặc \(=6\left(5-x\right)\) (khi \(x< 5\))
b) \(\sqrt{\dfrac{1}{4}\left(1-x\right)^2}=\dfrac{1}{2}\left|1-x\right|\)
\(=\dfrac{1}{2}\left(1-x\right)\) (khi \(x\le1\))
hoặc \(=\dfrac{1}{2}\left(x-1\right)\) (khi \(x>1\))
c) \(\sqrt{x^2\left(2x-4\right)^2}=\left|x\right|\left|2x-4\right|\)
\(=x\left(2x-4\right)\) (khi \(x\ge2\))
hoặc \(=x\left(4-2x\right)\) (khi \(0\le x< 2\))
hoặc \(=-x\left(4-2x\right)\) (khi \(x< 0\))
Rút gọn các biểu thức sau:
a. \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}\) - \(\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
b.\(\dfrac{1}{4-3\sqrt{2}}\) - \(\dfrac{1}{4+3\sqrt{2}}\)
c.\(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right)\): \(\sqrt{28}\)
d.\(\dfrac{3}{\sqrt{6}-\sqrt{3}}\)+\(\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
a: Ta có: \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}-\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\dfrac{8}{8+2\sqrt{15}}-\dfrac{8}{8-2\sqrt{15}}\)
\(=\dfrac{64-16\sqrt{15}-64-16\sqrt{15}}{4}\)
\(=\dfrac{-32\sqrt{15}}{4}=-8\sqrt{15}\)
b: Ta có: \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}\)
\(=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{-2}\)
\(=-\dfrac{6\sqrt{2}}{2}=-3\sqrt{2}\)
b) \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}=\dfrac{6\sqrt{2}}{-2}=-3\sqrt{2}\)
c) \(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right):\sqrt{28}=\dfrac{\left(\sqrt{7}+3\right)^2-\left(\sqrt{7}-3\right)^2}{\left(\sqrt{7}-3\right)\left(\sqrt{7}+3\right)}:\sqrt{28}=\dfrac{16+6\sqrt{7}-16+6\sqrt{7}}{7-9}=\dfrac{12\sqrt{7}}{-2}=-6\sqrt{7}\)
rút gọn các biểu thức sau:
a,\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
b,\(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
c,\(\sqrt{2+\sqrt{5-\sqrt{13-\sqrt{48}}}}\)
d,\(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
a) Ta có: \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2\cdot\sqrt{20}\cdot3+9}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5-2\cdot\sqrt{5}\cdot1+1}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
\(=\sqrt{1}=1\)
b) Ta có: \(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
\(=\sqrt{6+2\sqrt{5}-\sqrt{20-2\cdot2\sqrt{5}\cdot3+9}}\)
\(=\sqrt{6+2\sqrt{5}-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
\(=\sqrt{6+2\sqrt{5}-\left(2\sqrt{5}-3\right)}\)
\(=\sqrt{6+3}=3\)
c) Sửa đề: \(\sqrt{2+\sqrt{5+\sqrt{13-\sqrt{48}}}}\)
Ta có: \(\sqrt{2+\sqrt{5+\sqrt{13-\sqrt{48}}}}\)
\(=\sqrt{2+\sqrt{5+\sqrt{12-2\cdot2\sqrt{3}\cdot1+1}}}\)
\(=\sqrt{2+\sqrt{5+\sqrt{\left(2\sqrt{3}-1\right)^2}}}\)
\(=\sqrt{2+\sqrt{5+2\sqrt{3}-1}}\)
\(=\sqrt{2+\sqrt{3+2\sqrt{3}\cdot1+1}}\)
\(=\sqrt{2+\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\sqrt{3+\sqrt{3}}\)
d) Ta có: \(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
\(=\dfrac{\left(6-2\sqrt{5}\right)\sqrt{6+2\sqrt{5}}+\left(6+2\sqrt{5}\right)\sqrt{6-2\sqrt{5}}}{2\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{5}-1\right)^2\cdot\left(\sqrt{5}+1\right)+\left(\sqrt{5}+1\right)^2\cdot\left(\sqrt{5}-1\right)}{2\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\left(\sqrt{5}-1+\sqrt{5}+1\right)}{2\sqrt{2}}\)
\(=\dfrac{4\cdot2\sqrt{5}}{2\sqrt{2}}\)
\(=\dfrac{8\sqrt{5}}{2\sqrt{2}}=\dfrac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)
Rút gọn các biểu thức sau:
a) \(\left(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}+1\right)\left(\sqrt{3}-1\right)\)
b) \(\left(\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x+1}}\right)\) với x>0
\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=3-1=2\)
b: \(=\dfrac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{2}{\sqrt{x}+1}=\dfrac{-4}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}\)
a, \(=\left(\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+1\right)\left(\sqrt{3}-1\right)=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)
b, với x > 0
\(=\left(\dfrac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\left(\dfrac{2}{\sqrt{x+1}}\right)\)
\(=-\dfrac{-4}{\sqrt{x}\left(\sqrt{x}+2\right)\sqrt{x+1}}=\dfrac{4}{\left(\sqrt{x}+2\right)\sqrt{x^2+x}}\)
Rút gọn biểu thức sau:
A = \(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\) . \(\left(\sqrt{x}-1\right)\)
\(A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right).\left(\sqrt{x}-1\right)\);\(ĐK:x\ge0;x\ne1\)
\(A=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)\)
\(A=\left(\dfrac{x-\sqrt{x}+2\sqrt{x}-2-2\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)\)
\(A=\left(\dfrac{-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)\)
\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)
\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right).\left(\sqrt{x-1}\right)\left(đk:x\ne1\right)\\ A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right).\left(\sqrt{x}-1\right)\\ A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-2\right).\left(\sqrt{x}-1\right)\)
\(A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right).\left(\sqrt{x}-1\right)\\ A=\left(\dfrac{\sqrt{x}+2-2\sqrt{x}-2}{\sqrt{x}+1}\right).\left(\sqrt{x}-1\right)\\ A=\dfrac{-\sqrt{x}}{\sqrt{x}+1}.\left(\sqrt{x}-1\right)\\ A=\dfrac{-x+\sqrt{x}}{\sqrt{x}+1}\)
Rút gọn các biểu thức sau:
a)\(\sqrt{8}-2\sqrt{50}+\sqrt{18}\) b)\(\left(\dfrac{\sqrt{a}-a}{1-\sqrt{a}}+\sqrt{a}\right):\left(\dfrac{2\sqrt{a}}{1+\sqrt{a}}\right)\) (với a>0;a\(\ne1\))
\(a.\sqrt{8}-2\sqrt{50}+\sqrt{18}=2\sqrt{2}-10\sqrt{2}+3\sqrt{2}=\sqrt{2}\left(2-10+3\right)=-5\sqrt{2}\)
\(b.\left(\dfrac{\sqrt{a}-a}{1-\sqrt{a}}+\sqrt{a}\right):\dfrac{2\sqrt{a}}{1+\sqrt{a}}\left(đk:a\ge0;a\ne1\right)\)
\(=\left(\sqrt{a}+\sqrt{a}\right).\dfrac{1+\sqrt{a}}{2\sqrt{a}}\)
\(=2\sqrt{a}.\dfrac{1+\sqrt{a}}{2\sqrt{a}}\)
\(=1+\sqrt{a}\)
(Chỗ điều kiện bài b mik thấy a = 0 cũng có thể là nghiệm nên mik sửa lại nhé)
b. \(=\left(\dfrac{\sqrt{a}-a+a\left(1-\sqrt{a}\right)}{1-\sqrt{a}}\right):\left(\dfrac{2\sqrt{a}}{1+\sqrt{a}}\right)\)
\(=\left(\dfrac{2\sqrt{a}}{1-\sqrt{a}}\right):\left(\dfrac{2\sqrt{a}}{1+\sqrt{a}}\right)\)
\(=\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\)
\(=1-a\)
Câu 1: Rút gọn các biểu thức sau:
a. \(\sqrt{36\left(x-5\right)^2}\) với x ≥ 5
b. \(\sqrt{\dfrac{1}{4}\left(1-x\right)^2}\) với x > 1
c. \(\sqrt{x^2\left(2x-4\right)^2}\) với a ≥ 2
d. \(\dfrac{1}{x}\sqrt{x^2\left(1+x\right)^2}\) với x < -1
a) \(\sqrt{36\left(x-5\right)^2}\left(x\ge5\right)=6\left|x-5\right|=6\left(x-5\right)=6x-30\)
b) \(\sqrt{\dfrac{1}{4}\left(1-x\right)^2}\left(x>1\right)=\dfrac{1}{2}\left|1-x\right|=\dfrac{1}{2}\left(x-1\right)=\dfrac{1}{2}x-\dfrac{1}{2}\)
c) \(\sqrt{x^2\left(2x-4\right)^2}\left(x\ge2\right)=\left|x\left(2x-4\right)\right|=x\left(2x-4\right)=2x^2-4x\)
d) \(\dfrac{1}{x}\sqrt{x^2\left(1+x\right)^2}\left(x< -1\right)=\dfrac{1}{x}\left|x\left(1+x\right)\right|=\dfrac{1}{x}x\left(1+x\right)=1+x\)
Rút gọn các biểu thức sau:
a, \(\sqrt{\left(120-11\right)^2}+\sqrt{\left(10-\sqrt{120}\right)^2}\)
b, \(\sqrt{x+2+2\sqrt{x+1}-\sqrt{x+2+2\sqrt{x+1}}}\) ( với đk x \(\ge\) -1 )
Giúp em với !!
\(\sqrt{\left(120-11\right)^2}+\sqrt{\left(10-\sqrt{120}\right)^2}\)
\(=120-11+10+\sqrt{120}\)
\(=\sqrt{120}\left(\sqrt{120}+1\right)-1\)
\(a,=\left(120-11\right)+\left|10-\sqrt{120}\right|=109+\sqrt{120}-10=99+2\sqrt{30}\\ b,=\sqrt{\left(\sqrt{x+1}+1\right)^2-\left(\sqrt{x+1}+1\right)^2}=\sqrt{0}=0\)