Khử mẫu trong dấu căn:
a) \(2a.\sqrt{\dfrac{3}{5}}\); b) \(-3x.\sqrt{\dfrac{5}{x}}\) (với x > 0); c) \(\sqrt{-\dfrac{3a}{b}}\) (a ≥ 0, b > 0).
Bài 2: Khử mẫu biểu thức lấy căn:
a)\(\sqrt{\dfrac{3}{2a}}\) với a\(\ge\)0 b) \(\sqrt{\dfrac{3ab}{2}}\) với ab>0
a) `=(\sqrt3)/(\sqrt(2a)) = (\sqrt(6a))/(2a)`
b) `=(\sqrt(3ab))/(\sqrt2) = (\sqrt(6ab))/4`
Câu 3: Đưa thừa số vào trong dấu căn:
a. 2a\(\sqrt{3a^2b}\) với a≥o và b≥0
b. -3ab2\(\sqrt{2a^2b^4}\) với a<0
\(a,=\sqrt{12a^4b}\\ b,\sqrt{18\left(-a\right)^4b^8}\)
khử mẫu của biểu thức lấy căn
a.\(\sqrt{\dfrac{4}{5}}\)
b.\(\sqrt{\dfrac{3}{125}}\)
c.\(\sqrt{\dfrac{3}{2a^3}}\) với a>0
b1: đưa thứa số vào trong dấu căn rồi tính :
a) \(6\left(\sqrt{15}-4\right)\sqrt{\dfrac{31+8\sqrt{15}}{12}}\)
b) \(\dfrac{x+1}{x-1}\sqrt{\dfrac{x^2-3x+2}{x+1}}\)
b2: Khử mẫu của biểu thức lấy căn rồi tính :
\(\dfrac{2\sqrt{3}-10}{5}\sqrt{\dfrac{5+\sqrt{3}}{5-\sqrt{3}}}\)
Bài 2:
\(\dfrac{2\sqrt{3}-10}{5}\cdot\sqrt{\dfrac{5+\sqrt{3}}{5-\sqrt{3}}}\)
\(=\dfrac{2\sqrt{3}-10}{5}\cdot\sqrt{\dfrac{28+10\sqrt{3}}{22}}\)
\(=\dfrac{2\sqrt{3}-10}{5}\cdot\dfrac{5+\sqrt{3}}{\sqrt{22}}\)
\(=\dfrac{2\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}{5\sqrt{22}}\)
\(=\dfrac{2\cdot\left(3-25\right)}{5\sqrt{22}}=\dfrac{-44}{5\sqrt{22}}=\dfrac{-2\sqrt{22}}{5}\)
1) thực hiện phép tính
\(3\sqrt{12}+\dfrac{1}{2}\sqrt{48}-\sqrt{27}\)
2) trục căn thức ở mẫu : \(\dfrac{2}{\sqrt{3}-5}\)
3) khử mẫu của biểu thức lấy căn: \(\sqrt{\dfrac{2}{5}}\)
1) Ta có: \(3\sqrt{12}+\dfrac{1}{2}\sqrt{48}-\sqrt{27}\)
\(=3\cdot2\sqrt{3}+\dfrac{1}{2}\cdot4\sqrt{3}-3\sqrt{3}\)
\(=6\sqrt{3}+2\sqrt{3}-3\sqrt{3}\)
\(=5\sqrt{3}\)
2) Ta có: \(\dfrac{2}{\sqrt{3}-5}\)
\(=\dfrac{2\left(\sqrt{3}+5\right)}{\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}\)
\(=\dfrac{2\left(\sqrt{3}+5\right)}{3-25}\)
\(=\dfrac{-2\left(\sqrt{3}+5\right)}{22}\)
\(=\dfrac{-\sqrt{3}-5}{11}\)
3) Ta có: \(\sqrt{\dfrac{2}{5}}\)
\(=\dfrac{\sqrt{2}}{\sqrt{5}}\)
\(=\dfrac{\sqrt{2}\cdot\sqrt{5}}{5}\)
\(=\dfrac{\sqrt{10}}{5}\)
1) Với giá trị nào của x ta có \(x\sqrt{3}=-\sqrt{3x^2}\)
2) Đưa thừa số vào trong dấu căn của biểu thức \(ab^2\sqrt{a}\) với a > 0 ta được :
3) Khử mẫu của biểu thức \(a\sqrt{\dfrac{b}{a}}\) (với a>0) ta được :
\(1,ĐKXĐ:x\ge0\\ x\sqrt{3}=-\sqrt{3x^2}\\ \Leftrightarrow3x^2=9x^2\\ \Leftrightarrow6x^2=0\\ \Leftrightarrow x=0\left(tm\right)\)
\(2,ab^2\sqrt{a}=ab^2\sqrt{a}\)
\(3,a\sqrt{\dfrac{b}{a}}=\sqrt{ab}\)
Khử mẫu của biểu thức lấy căn:
\(\sqrt{\dfrac{1}{600}};\sqrt{\dfrac{11}{540}};\sqrt{\dfrac{3}{50}};\sqrt{\dfrac{5}{98}};\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}.\)
1. Rút gọn biểu thức
\(\sqrt{\dfrac{4}{3}}+\sqrt{12}-\dfrac{4}{3}\sqrt{\dfrac{3}{4}}\)
2. Đưa thừa số vào trong dấu căn :
a. \(\left(2-a\right)\sqrt{\dfrac{2a}{a-2}}\) với a lớn hơn 2
b. với 0 bé hơn x, x bé hơn 5. \(\left(x-5\right)\sqrt{\dfrac{x}{25-x^2}}\)
c. Với 0 bé hơn a, a bé hơn b \(\left(a-b\right)\)\(\sqrt{\dfrac{3a}{b^2-a^2}}\)
Khử mẫu của biểu thức lấy căn:
a) $\sqrt{\dfrac{3}{2}}$;
b) $\sqrt{\dfrac{3 a}{5 b}}$ với $a . b>0$;
c) $\sqrt{\dfrac{5}{12}}$;
d) $\sqrt{\dfrac{5 x}{18 y}}$ với $x . y>0$;
e) $\sqrt{\dfrac{(1+\sqrt{2})^{3}}{27}}$.
a) \(\sqrt{\frac{3}{2}}=\frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{3}.\sqrt{2}}{2}=\frac{\sqrt{6}}{2}\)
b) \(\sqrt{\frac{3a}{5b}}=\frac{\sqrt{3a}}{\sqrt{5b}}=\frac{\sqrt{3a}.\sqrt{5b}}{5b}=\frac{\sqrt{15ab}}{5b}\left(a;b>0\right)\)
c) \(\sqrt{\frac{5}{12}}=\frac{\sqrt{5}}{\sqrt{12}}=\frac{\sqrt{5}.\sqrt{12}}{12}=\frac{\sqrt{60}}{12}=\frac{2\sqrt{15}}{12}=\frac{\sqrt{15}}{6}\)
d) \(\sqrt{\frac{5x}{18y}}=\frac{\sqrt{5x}}{\sqrt{18y}}=\frac{\sqrt{5x}}{\sqrt{3^2.2y}}=\frac{\sqrt{5x}}{3\sqrt{2y}}\)
\(=\frac{\sqrt{5x}.\sqrt{3y}}{3.2y}=\frac{\sqrt{15xy}}{6xy}\)
Quên mất k ghi đk xy > 0
a) \(\sqrt{\dfrac{3}{2}}=\dfrac{\sqrt{3}.\sqrt{2}}{\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{6}}{2}\) b)\(\sqrt{\dfrac{3a}{5b}}=\dfrac{\sqrt{3a}.\sqrt{5b}}{\sqrt{5b}.\sqrt{5b}}=\dfrac{\sqrt{15ab}}{5b}\) \(\sqrt{\dfrac{5}{12}}=\dfrac{\sqrt{5}.\sqrt{12}}{\sqrt{12}.\sqrt{12}}=\dfrac{\sqrt{60}}{12}\) d)
Khử mẫu của biểu thức lấy căn :
A=\(\sqrt{\dfrac{2}{3}}+2\sqrt{\dfrac{3}{2}}-\sqrt{6}\)
B= \(3\sqrt{\dfrac{2}{5}}+\sqrt{\dfrac{5}{2}}-2\sqrt{10}\)
C= \(\sqrt{\dfrac{3a}{7}}-2\sqrt{\dfrac{7a}{3}}+\sqrt{21a}\)
a: \(A=\dfrac{\sqrt{6}}{3}+\sqrt{6}-\sqrt{6}=\dfrac{\sqrt{6}}{3}\)
b: \(B=\dfrac{3}{5}\sqrt{10}+\dfrac{1}{2}\sqrt{10}-2\sqrt{10}=-\dfrac{9}{10}\sqrt{10}\)
c: \(C=\dfrac{\sqrt{21}}{7}\cdot\sqrt{a}-2\cdot\dfrac{\sqrt{21}}{3}\cdot\sqrt{a}+\sqrt{21}\cdot\sqrt{a}\)
\(=\dfrac{10\sqrt{21a}}{21}\)