Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Châu
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 7 2020 lúc 12:21

1.

Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)

\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

2.

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)

Cộng vế với vế:

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)

3.

Từ câu b, thay \(c=1\) ta được:

\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)

Nguyễn Việt Lâm
3 tháng 7 2020 lúc 12:25

4.

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

Dấu "=" xảy ra khi \(a=b=c\)

5.

\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)

Cộng vế với vế:

\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

l҉o҉n҉g҉ d҉z҉
8 tháng 1 2021 lúc 22:31

1. bđt được viết lại thành

\(ab+bc+ca\ge a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\)

Theo bđt AM-GM thì :

\(ab+bc\ge2\sqrt{ab\cdot bc}=2\sqrt{ab^2c}=2b\sqrt{ac}\)

Tương tự : \(bc+ca\ge2c\sqrt{ab}\)\(ab+ca\ge2a\sqrt{bc}\)

Cộng vế với vế

=> \(2\left(ab+bc+ca\right)\ge2\left(a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\right)\)

=> \(ab+bc+ca\ge a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\)( đpcm )

Dấu "=" xảy ra <=> a=b=c

Khách vãng lai đã xóa
Bùi Hữu Vinh
Xem chi tiết
Đặng Ngọc Quỳnh
26 tháng 2 2021 lúc 6:00

Theo bđt Cauchy - Schwart ta có:

\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)

\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)

Đặt \(ab+bc+ca=x;abc=y\).

Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)

\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )

Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1

Khách vãng lai đã xóa
Bùi Hữu Vinh
26 tháng 2 2021 lúc 22:54

sai rồi nhé bạn 

Khách vãng lai đã xóa
Bùi Hữu Vinh
26 tháng 2 2021 lúc 23:05

làm sao mà \(x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\)lại luôn đúng

Khách vãng lai đã xóa
Hà Lê
Xem chi tiết
Thắng Nguyễn
9 tháng 7 2017 lúc 17:24

Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)

Cộng theo vế 3 BĐT trên rồi thu gọn

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng tiếp BĐT AM-GM

\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)

Tương tự rồi cộng theo vế có ĐPCM

Bài 2:

Quy đồng  BĐT trên ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)

Bài 4: Áp dụng BĐT AM-GM 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự rồi cộng theo vế

Bài 5: sai đề tự nhien có dấu - :v nghĩ là +

Game Master VN
9 tháng 7 2017 lúc 9:54

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]

 
Luân Đào
Xem chi tiết
tthnew
28 tháng 7 2019 lúc 19:15

Đề chơi căng nhỉ?

a) Dễ chứng minh VP =< 3

BĐT \(\Leftrightarrow\left(\frac{a+b}{1+a}-1\right)+\left(\frac{b+c}{1+b}-1\right)+\left(\frac{c+a}{1+c}-1\right)\ge0\)

\(\Leftrightarrow\frac{b-1}{1+a}+\frac{c-1}{1+b}+\frac{a-1}{1+c}\ge0\)

\(\Leftrightarrow\frac{\left(b-1\right)^2}{\left(1+a\right)\left(b-1\right)}+\frac{\left(c-1\right)^2}{\left(1+b\right)\left(c-1\right)}+\frac{\left(a-1\right)^2}{\left(1+c\right)\left(a-1\right)}\) >=0

Áp dụng BĐT Cauchy-Schwarz dạng Engel vào VT ta có đpcm.

P/s: Èo, sao đơn giản thế nhỉ? Em có làm sai chỗ nào chăng?

Trần Phúc Khang
28 tháng 7 2019 lúc 21:56

a, Ta có \(\frac{a+b}{a+1}=\frac{\left(a+b\right)\left(a+1\right)-a\left(a+b\right)}{a+1}=a+b-\frac{a\left(a+b\right)}{a+1}\)

\(\frac{1}{a+1}\le\frac{a+1}{4a}\)

=> \(\frac{a+b}{1+a}\ge a+b-\frac{\left(a+1\right)\left(a+b\right)}{4}=\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}a^2-\frac{1}{4}ab\)

Khi đó

\(Vt\ge\frac{3}{2}\left(a+b+c\right)-\frac{1}{4}\left(a^2+b^2+c^2\right)-\frac{1}{4}\left(ab+bc+ac\right)\)

=> \(VT\ge\frac{9}{2}-\frac{1}{4}\left(9-2ab-2bc-2ac\right)-\frac{1}{4}\left(ab+bc+ac\right)\)

=> \(VT\ge\frac{9}{4}+\frac{1}{4}\left(ab+bc+ac\right)\)

Lại có \(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=3\)

=> \(VT\ge ab+bc+ac\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

b,Ta có \(\frac{a}{b\left(a+b^2\right)}=\frac{a+b^2-b^2}{b\left(a+b^2\right)}=\frac{1}{b}-\frac{b}{a+b^2}\)

\(a+b^2\ge2b\sqrt{a}\)

=> \(\frac{a}{b\left(a+b^2\right)}\ge\frac{1}{b}-\frac{1}{2\sqrt{a}}\)

Lại có \(\frac{1}{\sqrt{a.1}}\le\frac{1}{2}\left(\frac{1}{a}+1\right)\)

=> \(\frac{a}{b\left(a+b^2\right)}\ge\frac{1}{b}-\frac{1}{4}.\left(\frac{1}{a}+1\right)\)

Khi đó

\(VT\ge\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\)

=> \(VT\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

Nguyễn Quang Định
29 tháng 7 2019 lúc 10:24

Bất đẳng thức được viết lại thành

\(\sum\frac{3-a}{1+a}\ge ab+bc+ca\)

\(ab+bc+ca\le3\) nên ta chỉ cần chứng minh

\(\sum\frac{3-a}{1+a}\ge3\)

Ta chứng minh bất đẳng thức phụ sau

\(\frac{3-a}{1+a}\ge2-a\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)

Thiết lập các bất đẳng thức tương tự ta có điều phải chứng minh

Lê Văn Hoàng
Xem chi tiết
không cần biết
Xem chi tiết

Sửa đề:  Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng

\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)

Áp dụng bđt Cauchy-Schwarz ta có:

\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)

Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)

          \(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)

Cộng từng vế các bđt trên ta được

\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c=1

Khách vãng lai đã xóa
Trịnh Quỳnh Nhi
Xem chi tiết
pham trung thanh
21 tháng 7 2018 lúc 14:48

Ta có: \(a^2+b^2\ge2ab\)

\(\Rightarrow\frac{ab}{a^2+b^2}\le\frac{1}{2}\)

Tương tự cộng lại suy ra \(VT\le\frac{3}{2}\)

Suy ra sai đề :)

Truc Ninh Tran
Xem chi tiết
Võ Thị Minh Trang
Xem chi tiết
Cần Cần
19 tháng 5 2017 lúc 13:25

Áp dụng BĐT Cô-si cho 2 số dương \(\frac{a}{bc}\) và \(\frac{b}{ca}\) ta có

\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{abc^2}}=2.\frac{1}{c}\)

Làm tương tự ta được

\(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\)

\(\frac{b}{ac}+\frac{c}{ab}\ge\frac{2}{a}\)

Cộng theo từng vế rồi chia cho 2. Ta được BĐT cần chứng minh.