Cho abc chia hết cho 27 chứng minh rằngbca chia hết cho 27
Help me
Nyanh nya đang cần gấp
Cảm ơn nhìu
1)Chứng minh
abc-cba chia hết cho 11 với a>c.
2)Chứng minh:
a)Nếu ab+cd+eg chia hết cho 11 thì abcdeg chia hết cho 11.
b)Nếu abc+xyz chia hết cho 27 thì abcxyz chia hết cho 27
(Mọi người ơi giúp với,các bạn nhớ giải hẳn ra nhé!Cảm ơn các bạn rất nhiều)
1
abc - cba = ( a x 100 + b x 10 + c ) - ( c x 100 + b x 10 + a ) = a x 99 + b x 10 - c x 99 + b x 10 = a x 99 - c x 99
Vì a x 99 chia hết cho 11 , c x 99 chia hết cho 11 nên abc - cba cũng chia hết cho 11
2
a ) abcdeg = ab x 10000 + cd x 100 + eg = a x 9999 + cd x 99 + ( ab + cd +eg )
Vì a x 9999 chia hết cho 11 , cd x 99 chia hết cho 11 , ab + cd +eg chia hết cho 11 ( theo đề ) nên abcdeg cũng chia hết cho 11
b ) CÂU NÀY MÌNH CHƯA NGHĨ RA NHA
abc chia hết cho 27 chứng minh bca chia hết cho 27
Cho abc chia hết cho 27. Chứng minh rằng: bca chia hết cho 27.
Ta có : abc chia hết cho 27
=> 100.a + 10.b + c chia hết cho 27
=> 10. ( 100.a + 10.b + c ) chia hết cho 27
=> 1000.a + 100.b + 10.c chia hết cho 27
=> 999.a + ( 100.b + 10.c + a ) chia hết cho 27.
Mà 999.a chia hết cho 27 nên 100.b + 10.c + a chia hết cho 27
Hay bca chia hết cho 27.
Vậy bca chia hết cho 27.
Ta thấy : abc chia hết cho 27
=> 100.a + 10.b + c chia hết cho 27
=> 10. ( 100.a + 10.b + c ) chia hết cho 27
=> 1000.a + 100.b + 10.c chia hết cho 27
=> 999.a + ( 100.b + 10.c + a ) chia hết cho 27.
Mà 999.a chia hết cho 27 nên 100.b + 10.c + a chia hết cho 27
Hay bca chia hết cho 27.
Vậy bca chia hết cho 27.
Cho abc chia hết cho 27. Chứng minh rằng: bca chia hết cho 27
Ta có:abc-bca
=100xa+10xb+c-100xb-10xc-a
=99xa-90xb-9xc
=9x(11xa-10xb-c) chia hết cho 9(1)
Do abc chia hết cho 27=>abc chia hết cho 3=>a+b+c chia hết cho 3
=>14xa+14xb+14xc chia hết cho 3
Ta có:3xa+24xb+15xc cũng chia hết cho 3
=>14xa+14xb+14xc-3xa-24xb-15xc chia hết cho a
=>11xa-10xb-c chia hết cho 3
=>(1) chia hết cho 27
=>abc-bca chia hết cho 27
Mà abc chia hết cho 27
=>bca chia hết cho 27
Giải:
abc chia hết cho 27
=> abc0 chia hết cho 27
=> 100a+bc0 chia hết cho 27
=> 999a+a+bc0 chia hết cho 27
=> 27×37a+bca chia hết cho 27
Vì 27 chia hết cho 27 nên bca chia hết cho 27.
vì 27 chia hết cho 27 nên abc chia hết cho 17
cho mk nha
cho abc chia hết cho 27 chứng minh rằng bcd chia hết cho 27
abc chia hết cho 27
=> abc chia hết cho 3 và 9
=> a + b + c chia hết cho 3 và 9
=>Tổng của bca = b+c+a = a+b+c và cũng chia hết cho 3 và 9
=> Nếu abc chia hết cho 27 thì bca cũng chia hết cho 27
abc chia hết cho 27
=> abc chia hết cho 3 và 9
=> a + b + c chia hết cho 3 và 9
=>Tổng của bca = b+c+a = a+b+c và cũng chia hết cho 3 và 9
=> Nếu abc chia hết cho 27 thì bca cũng chia hết cho 27
abc chia hết cho 27
=> abc chia hết cho 3 và 9
=> a + b + c chia hết cho 3 và 9
=>Tổng của bca = b+c+a = a+b+c và cũng chia hết cho 3 và 9
=> Nếu abc chia hết cho 27 thì bca cũng chia hết cho 27
Cho abc chia hết cho 27. Chứng minh bca chia hết cho 27.
abc \(⋮\)27
\(\Rightarrow\)10abc \(⋮\)27
hay abc0 \(⋮\)27
\(\Rightarrow\)1000a + bc0 \(⋮\)27
\(\Rightarrow\)999a + a + bc0 \(⋮\)27
vì 999a \(⋮\)27 nên a + bc0 \(⋮\)27 hay bca \(⋮\)27
Cho abc chia hết cho 27. Chứng minh rằng bca chia hết cho 27
abc chia hết cho 27 => abc chia hết cho 3 và 9 mà chia hết cho 9 thì chia hết cho 3 => a+b+c chia hết cho 3 và 9
vậy suy ra bca tổng của b+c+a = a+b+c và cũng chia hết cho 3 và 9 => nếu abc chia hết cho 27 thì bca cũng chia hết cho 27
abc là nhân thì ko cần phải cm vì a.b.c=b.c.a
abc chia hết cho 27 chứng minh rằng cba chia hết cho 27
abc chia hết có 27
=> 100a + 10b + c chia hết cho 27
=> 10(100a + 10b + c ) chia hết cho 27
=> 1000a + 100b + 10c chia hết cho 27
=> 999a + ( 100b + 10c + a ) chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b + 10c + a = bca cia hết cho 27
ABC chia hết cho 27 thì BCA chia hết cho 27 . Chứng minh
cái này là A*B*C hay là j vậy bạn