tìm x
172 . x2 \(-\)79 \(\div\)983 = 2 -3
A=(2002-79+15)-(-79+15).Tìm A
Kết quả lun :
\(A=\)\(2002-79+15+79-15\)
\(A=2002+\left(-79\right)+15+79+\left(-15\right)\)
\(A=2002+\left(-79+79\right)+\left(-15+15\right)\)
\(A=2002+0+0\)
\(A=2002\)
Ta có: A= (2002-79+15)- (-79+15)
= 2002-79+15+79-15
= (-79+79)+(15-15)+2002
= 0+0+2002
= 2002
Vậy A= 2002
_Học tốt nha_
x^2-2(2m+1)+4m^2+4m-3 tìm m dể pt thỏa mãn |x1|=2|x2|
(x1<x2)
Ta có:
\(\Delta^'=\left[-\left(2m+1\right)\right]^2-\left(4m^2+4m-3\right)\)
\(=4m^2+4m+1-4m^2-4m+3=4>0\left(\forall m\right)\)
=> PT luôn có 2 nghiệm phân biệt:
\(\hept{\begin{cases}x_1=\frac{2m+1-2}{1}=2m-1\\x_2=\frac{2m+1+2}{1}=2m+3\end{cases}}\) vì \(x_1< x_2\)
Ta có: \(\left|x_1\right|=2\left|x_2\right|\Leftrightarrow\left|2m-1\right|=2\left|2m+3\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2m-1=2\left(2m+3\right)\\1-2m=2\left(2m+3\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}2m=-7\\6m=-5\end{cases}}\Rightarrow\orbr{\begin{cases}m=-\frac{7}{2}\\m=-\frac{5}{6}\end{cases}}\)
Vậy \(m\in\left\{-\frac{7}{2};-\frac{5}{6}\right\}\)
2. (x2-4)(x+3)=(x2-4)(x-1)
Bài 1:
Đặt \(t=2x^2+3x-1\) ta có:
\(t^2-5\left(t+4\right)+24=0\)
\(\Rightarrow t^2-5t-20+24=0\)
\(\Rightarrow t^2-5t+4=0\)
\(\Rightarrow\left(t-4\right)\left(t-1\right)=0\)\(\Rightarrow\left[\begin{matrix}t=4\\t=1\end{matrix}\right.\)
*)Xét \(2x^2+3x-1=4\)
\(\Rightarrow\left(x-1\right)\left(2x+5\right)=0\)\(\Rightarrow\left[\begin{matrix}x=1\\x=-\frac{5}{2}\end{matrix}\right.\)
*)Xét \(2x^2+3x-1=1\)
\(\Rightarrow\left(x+2\right)\left(2x-1\right)=0\)\(\Rightarrow\left[\begin{matrix}x=-2\\x=\frac{1}{2}\end{matrix}\right.\)
Bài 2:
\(\left(x^2-4\right)\left(x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
\(\Rightarrow\left(x^2-4\right)\left(x+3\right)-\left(x^2-4\right)\left(x-1\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left[x+3-\left(x-1\right)\right]=0\)
\(\Rightarrow4\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+2\right)=0\)\(\Rightarrow\left[\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Cho x 1 là giá trị thỏa mãn x - 876 = ( - 1576) và x 2 là giá trị thỏa mãn x - 983 = ( - 163). Tính tổng x 1 + x 2
A. 120
B. 1500
C. −100
D. −800
Cho x,y là hai đại lượng tỉ lệ thuận.Gọi x1,x2 là hai giá trị tương ứng của x.Gọi y1,y2 là hai giá trị tương ứng của y:
a) Tìm x1, y1(biết 2x1=6y1). b)x1=2.x2, y2=10.Biểu diễn các số 1 983; 2 756; 2 053 theo mẫu 1 983 = 1 x 1 000 + 9 x 100 + 8 x 10 + 3.
2 756 = 2 x 1000 + 7 x 100 + 5 x 10 + 6
2 053 = 2 x 1000 + 0 x 100 + 5 x 10 + 3
cho phương trình: x^2 -2(m-1)x +m+2 =0 (1),(x là ẩn, m là tham số) a) Giải phương trình với m=5
b) tìm m dể phương trình 1 có 2 nghiệm x1, x2 thỏa mãn: x1/x2+x2/1=4a) Với m = 5 phương trình đã cho trở thành
x2 - 8x + 7 = 0
Dễ thấy phương trình trên có a + b + c = 0 nên có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 7
Vậy với m = 5 thì phương trình đã cho có tập nghiệm S = { 1 ; 7 }
b) Ta có : Δ = b2 - 4ac = [ -2( m - 1 ) ]2 - 4( m + 2 )
= 4( m2 - 2m + 1 ) - 4m + 8
= 4m2 - 12m + 12 = 4( m - 3/2 )2 + 3 ≥ 3 > 0 ∀ m
=> Phương trình đã cho luôn có hai nghiệm phân biệt với mọi số thực m
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=\frac{c}{a}=m+2\end{cases}}\)
Ta có : \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\Leftrightarrow\frac{x_1^2}{x_1x_2}+\frac{x_2^2}{x_1x_2}=4\)
\(\Rightarrow x_1^2+x_2^2=4x_1x_2\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)
\(\Rightarrow\left(2m-2\right)^2-6\left(m+2\right)=0\)
\(\Leftrightarrow4m^2-8m+4-6m-12=0\Leftrightarrow2m^2-7m-4=0\)
Đến đây dễ rồi bạn tự làm tiếp heng :)
Bài 1: Tìm các số x; y; z biết rằng:
a) và xyz = 810; b) và x2 + y2 + z2 = 14.
b) và x2 + y2 + z2 = 14.
Tìm số tự nhiên x, biết:
176 : x2 + 79 = 10 . 9
\(176:x^2+79=10\cdot9\)
\(\Leftrightarrow176:x^2=11\)
\(\Leftrightarrow x=4\)