Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kamen rider ghost
Xem chi tiết
ngonhuminh
31 tháng 10 2016 lúc 18:32

ds=1

B=[n(n+1)+3] chia 2

3 chia 2 dư 1

n.(n+1) chia 2 dư 0

Ben 10
14 tháng 9 2017 lúc 20:00

Giải:

Ta có: -n2 + 3n – 7 = -n.(n + 2) + 5n – 7 = -n(n + 2) + 5.(n + 2) -17

Để -n2 + 3n -7 chia hết cho n+2 thì 17 ⋮ n + 2

=> n + 2 ∈ Ư(17) = {-17; -1; 1; 17}

=> n ∈ {-19; -3; -1; 15}.

Kết luận: n ∈ {-19; -3; -1; 15}.

KHANH QUYNH MAI PHAM
Xem chi tiết
Nguyễn Trương Nhật Anh
Xem chi tiết
Dang Tung
13 tháng 12 2023 lúc 6:50

Theo bài ra, suy ra : N + 1 chia hết cho cả 2, 3, 7 và 11

Do N là số dương nhỏ nhất 

Nên N + 1 thuộc BCNN(2,3,7,11) 

Mà BCNN(2,3,7,11) = 2.3.7.11 = 462

Hay N+1 = 462

=> N = 461

Nguyễn Tố Uyên
13 tháng 12 2023 lúc 20:53

Theo bài ra, suy ra : N + 1 chia hết cho cả 2, 3, 7 và 11

Do N là số dương nhỏ nhất 

Nên N + 1 thuộc BCNN(2,3,7,11) 

Mà BCNN(2,3,7,11) = 2.3.7.11 = 462

Hay N+1 = 462

=> N = 461

Phạm Ngọc Anh
Xem chi tiết
Ngô Tấn Đạt
19 tháng 12 2016 lúc 20:33

1) \(\left|x+1\right|+3=8\\ \Rightarrow\left|x+1\right|=5\\ \Rightarrow x+1=5h\text{oặ}c=-5\\ \Rightarrow x=4;-6\)

2) \(n+6⋮n+2\\ \Rightarrow\left(n+2\right)+4⋮n+2\\ \Rightarrow4⋮n+2\\ \Rightarrow n+2\in\text{Ư}\left(4\right)=\left\{1;2;4\right\}\\ \Rightarrow n\in\left\{0;2\right\}\)

b) \(5n+27⋮4\\ \Rightarrow4n+n+27⋮4\\ \Rightarrow n+27⋮4\)

n+27 chia hết cho 4 khi n chia 4 dư 3

=> n=4k+3 ( k thuộc N)

3) Gọi thương của phép chia là : k

=> a=72k+69

a chia cho 18 dư 15

=> thường là 15

=> a=18.15+15=285

 

Lương Thế Quyền
Xem chi tiết
Minami Kotori
Xem chi tiết
Phùng Nguyễn Khánh Linh
Xem chi tiết
Huỳnh Ngọc Thuỳ
Xem chi tiết
Du Thien
29 tháng 8 2021 lúc 16:25

Bài 1: 
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2
​n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 ​chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53

Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9)
 ​chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) ​chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài

Khách vãng lai đã xóa
Du Thien
29 tháng 8 2021 lúc 16:28

Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).

Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài

Bài 2: 

Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).

Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài

Khách vãng lai đã xóa
Du Thien
29 tháng 8 2021 lúc 16:49

Bài 1:

Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2​n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 ​chia hết cho 3 (1)

Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)

Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3; 5; 7). Do 3; 5 và 7 là các số nguyên tố cùng nhau nên BCNN(3; 5; 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53

Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài

Bài 2: 

Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).

Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)

Từ (1) và (2) ta có n + 65 là UC(8; 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8; 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)

Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số

Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài

Khách vãng lai đã xóa
Bùi Võ Phương Anh
Xem chi tiết
Trần Thế Anh
9 tháng 11 2020 lúc 11:00

Trần Thế Anh
9 tháng 11 2020 lúc 11:08

Trần Thế Anh
9 tháng 11 2020 lúc 11:08