CHỨNG MINH: \(7^{99}+7^{98}+7^{97}\div55\)(chia hết)
CHỨNG MINH: 799+798+797 CHIA HẾT CHO 55
Chứng minh rằng 7^100-7^99+7^98 chia hết cho 43
7^98(7^2-7+1)=43.7^98
nên biểu thức chia hết cho 43
Chứng minh: A= ( 7^100+7^99+7^98) chia hết cho 57
#Nguồn: Băng
Ta có: \(7^{100}+7^{99}+7^{98}\)
\(=7^{98}\left(1+7^1+7^2\right)\)
\(=7^{98}\times57\) chia hết cho \(57\)
Vậy \(\left(7^{100}+7^{99}+7^{98}\right)⋮57\left(đpcm\right)\)
A = 7100 + 799 + 798
A = 798.72 + 798.7 + 798
A = 798.( 72 + 7 + 1)
A = 798.57 chia hết cho 57
=> 7100 + 799 + 798 chia hết cho 57 (đpcm)
Chứng minh :(7100+799+798) chia hết cho 57
(7^100+7^99+7^98)
= 7^98(7^2+7+1)
= 7^98 x 57 chia hết cho 57
(7100+799+798)
=798(799+798)
=798.57 chia hết cho 57
**** nha
Ta có : 7^100 + 7^99 + 7^98 = 7^98( 1 + 7 + 7^2 )
= 7^98 . 57 chia hết cho 57
=> ( 7^100 + 7^99 + 7^98 ) chia hết cho 57
( điều phải chứng minh )
Chứng minh rằng :
a)5^100-5^99+5^98 chia hết cho 7
b)7^29+7^28-7^27 chia hết cho 11
a. 5100 - 599 + 598
= 598.(52 - 5 + 1)
= 598.(25 - 5 + 1)
= 598.21
= 598.3.7 chia hết cho 7
Vậy 5100 - 599 + 598 chia hết cho 7 (Đpcm).
b. 729 + 728 - 727
= 727.(72 + 7 - 1)
= 727.(49 + 7 - 1)
= 727.55
= 727.5.11 chia hết cho 11
Vậy 729 + 728 - 727 chia hết cho 11 (Đpcm).
a. 5100 - 599 + 598
= 598.(52 - 5 + 1)
= 598.(25 - 5 + 1)
= 598.21
= 598.3.7 chia hết cho 7
Vậy 5100 - 599 + 598 chia hết cho 7 (Đpcm).
b. 729 + 728 - 727
= 727.(72 + 7 - 1)
= 727.(49 + 7 - 1)
= 727.55
= 727.5.11 chia hết cho 11
Vậy 729 + 728 - 727 chia hết cho 11 (Đpcm).
a. 5100 - 599 + 598
= 598.(52 - 5 + 1)
= 598.(25 - 5 + 1)
= 598.21
= 598.3.7 chia hết cho 7
Vậy 5100 - 599 + 598 chia hết cho 7 (Đpcm).
b. 729 + 728 - 727
= 727.(72 + 7 - 1)
= 727.(49 + 7 - 1)
= 727.55
= 727.5.11 chia hết cho 11
Vậy 729 + 728 - 727 chia hết cho 11 (Đpcm).
1) 1-2-3+4+5-6-7+8+...+97-98-99+100
Tính nhanh hộ mình
2) Chứng minh tích 2 số chẵn liên tiếp chia hết cho 8
Giải hộ mik .
1) 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 97 - 98 - 99 + 100 ( có 100 số; 100 chia hết cho 4)
= (1 - 2 - 3 + 4) + (5 - 6 - 7 + 8) + ... + (97 - 98 - 99 + 100)
= 0 + 0 + ... + 0
= 0
2) Gọi 2 số chẵn liên tiếp là 2k và 2k + 2 (k thuộc Z)
Ta có:
2k.(2k + 2)
= 2k.2.(k + 1)
= 4.k.(k + 1)
Vì k.(k + 1) là tích 2 số tự nhiên liên tiếp nên k.(k + 1) chia hết cho 2
=> 4.k.(k + 1) chia hết cho 8
=> đpcm
Chú ý: nếu bn chưa học tập hợp Z thì có thể sửa thành tập hợp N
1.1-2-3+4+5-6-7+8+...+97-98-99+100
=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
=0.50
=0
2.VD : 2 số chẵn là 2 ; 4
2 x 4 = 8 chia hết cho 8 nên tích 2 số chẵn liên tiếp chia hết cho 8
A=7^3+7^4+7^5+7^6+...+7^97+7^98.Chứng tỏ A chia hết cho 8
A = 73 + 74 + 75 + 76 + ... + 797 + 798
A = ( 73 + 74 ) + ( 75 + 76 ) + .... + ( 797 + 798 )
A = 73 . ( 1 + 7 ) + 75 . ( 1 + 7 ) + ... + 797 . ( 1 + 7 )
A = 73 . 8 + 75 . 8 + .... + 797 . 8
A= 8 . ( 73 + 75 + ..... + 797 ) \(⋮8\)
Vậy A \(⋮8\)( dpcm )
Cho A=7^3+7^4+7^5+7^6+..........+7^97+7^98
Chứng tỏ A chia hết cho 8
Ta có :
\(A=7^3+7^4+....+7^{98}\)
\(\Rightarrow A=7^3\left(1+7\right)+......+7^{97}\left(1+7\right)\)
\(\Rightarrow A=7^3.8+......+7^{97}.8\)
=> A chia hết cho 8
Chứng tỏ (798+799+7100)⋮(798+797+796)
Ta có: \(7^{98}+7^{99}+7^{100}=7^2\left(7^{98}+7^{97}+7^{96}\right)⋮\left(7^{98}+7^{97}+7^{96}\right)\)
Vậy \(\left(7^{98}+7^{99}+7^{100}\right)⋮\left(7^{98}+7^{97}+7^{96}\right)\left(đpcm\right)\)
Ta có: \(7^{98}+7^{99}+7^{100}=7^2\left(7^{98}+7^{97}+7^{96}\right)⋮\left(7^{98}+7^{97}+7^{96}\right)\)
Vậy \(\left(7^{98}+7^{99}+7^{100}\right)⋮\left(7^{98}+7^{97}+7^{96}\right)\)
\(\rightarrowđpcm\)