Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vương Thảo
Xem chi tiết
Long Vũ Duy
Xem chi tiết
aepro888
15 tháng 4 2018 lúc 15:32

7^98(7^2-7+1)=43.7^98

nên biểu thức chia hết cho 43

Long Vũ Duy
15 tháng 4 2018 lúc 15:39

Cảm ơn bạn nhiều nha

Nguyễn Thị Hương Trang
Xem chi tiết
Diệu Huyền
9 tháng 11 2019 lúc 20:27

#Nguồn: Băng

Ta có: \(7^{100}+7^{99}+7^{98}\)

\(=7^{98}\left(1+7^1+7^2\right)\)

\(=7^{98}\times57\) chia hết cho \(57\)

Vậy \(\left(7^{100}+7^{99}+7^{98}\right)⋮57\left(đpcm\right)\)

Khách vãng lai đã xóa
Dinh Quang Vinh
10 tháng 11 2019 lúc 18:48

A = 7100 + 799 + 798

A = 798.72 + 798.7 + 798

A = 798.( 72 + 7 + 1)

A = 798.57 chia hết cho 57

=> 7100 + 799 + 798 chia hết cho 57 (đpcm)

Khách vãng lai đã xóa
luong gia lam
Xem chi tiết
super saiyan vegeto
14 tháng 11 2016 lúc 19:21

(7^100+7^99+7^98)

= 7^98(7^2+7+1)

= 7^98 x 57 chia hết cho 57

Nguyễn Hữu Triết
14 tháng 11 2016 lúc 19:23

(7100+799+798)

=798(799+798)

=798.57 chia hết cho 57

**** nha

The Lonely Cancer
14 tháng 11 2016 lúc 19:23

Ta có : 7^100 + 7^99 + 7^98 = 7^98( 1 + 7 + 7^2 )

                                          = 7^98 .   57                  chia hết cho 57

=> ( 7^100 + 7^99 + 7^98 ) chia hết cho 57

                                ( điều phải chứng minh )

Assembly who is a fan of...
Xem chi tiết
Minh Hiền
8 tháng 7 2016 lúc 14:15

a. 5100 - 599 + 598

= 598.(52 - 5 + 1)

= 598.(25 - 5 + 1)

= 598.21

= 598.3.7 chia hết cho 7

Vậy 5100 - 599 + 598 chia hết cho 7 (Đpcm).

b. 729 + 728 - 727

= 727.(72 + 7 - 1)

= 727.(49 + 7 - 1)

= 727.55

= 727.5.11 chia hết cho 11

Vậy 729 + 728 - 727 chia hết cho 11 (Đpcm).

Boy 9xPronine
14 tháng 7 2016 lúc 10:57

a. 5100 - 599 + 598

= 598.(52 - 5 + 1)

= 598.(25 - 5 + 1)

= 598.21

= 598.3.7 chia hết cho 7

Vậy 5100 - 599 + 598 chia hết cho 7 (Đpcm).

b. 729 + 728 - 727

= 727.(72 + 7 - 1)

= 727.(49 + 7 - 1)

= 727.55

= 727.5.11 chia hết cho 11

Vậy 729 + 728 - 727 chia hết cho 11 (Đpcm).

Boy 9xPronine
14 tháng 7 2016 lúc 10:58

a. 5100 - 599 + 598

= 598.(52 - 5 + 1)

= 598.(25 - 5 + 1)

= 598.21

= 598.3.7 chia hết cho 7

Vậy 5100 - 599 + 598 chia hết cho 7 (Đpcm).

b. 729 + 728 - 727

= 727.(72 + 7 - 1)

= 727.(49 + 7 - 1)

= 727.55

= 727.5.11 chia hết cho 11

Vậy 729 + 728 - 727 chia hết cho 11 (Đpcm).

Lê Bùi Hà Phương
Xem chi tiết
soyeon_Tiểu bàng giải
16 tháng 7 2016 lúc 19:13

1) 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 97 - 98 - 99 + 100 ( có 100 số; 100 chia hết cho 4)

= (1 - 2 - 3 + 4) + (5 - 6 - 7 + 8) + ... + (97 - 98 - 99 + 100)

= 0 + 0 + ... + 0

= 0

2) Gọi 2 số chẵn liên tiếp là 2k và 2k + 2 (k thuộc Z)

Ta có:

2k.(2k + 2)

= 2k.2.(k + 1)

= 4.k.(k + 1)

Vì k.(k + 1) là tích 2 số tự nhiên liên tiếp nên k.(k + 1) chia hết cho 2

=> 4.k.(k + 1) chia hết cho 8

=> đpcm

Chú ý: nếu bn chưa học tập hợp Z thì có thể sửa thành tập hợp N

Thám Tử THCS Nguyễn Hiếu
16 tháng 7 2016 lúc 19:10

1.1-2-3+4+5-6-7+8+...+97-98-99+100

=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)

=0.50

=0

2.VD : 2 số chẵn là 2 ; 4

2 x 4 = 8 chia hết cho 8 nên tích 2 số chẵn liên tiếp chia hết cho 8

Minh Nguyệt
Xem chi tiết
nguyen duc thang
22 tháng 12 2017 lúc 12:48

A = 73 + 74 + 75 + 76 + ... + 797 + 798

A = ( 73 + 74 ) + ( 75 + 76 ) + .... + ( 797 + 798 )

A = 73 . ( 1 + 7 ) + 75 . ( 1 + 7 ) + ... + 797 . ( 1 + 7 )

A = 73 . 8 + 75 . 8 + .... + 797 . 8

A= 8 . ( 73 + 75 + ..... + 797 \(⋮8\)

Vậy A \(⋮8\)( dpcm )

Nguyễn Thị Phương Thảo
Xem chi tiết
Isolde Moria
12 tháng 11 2016 lúc 16:29

Ta có :

\(A=7^3+7^4+....+7^{98}\)

\(\Rightarrow A=7^3\left(1+7\right)+......+7^{97}\left(1+7\right)\)

\(\Rightarrow A=7^3.8+......+7^{97}.8\)

=> A chia hết cho 8

Trần Ngọc Bảo Hân
Xem chi tiết
Lê Gia Bảo
14 tháng 11 2017 lúc 19:54

Ta có: \(7^{98}+7^{99}+7^{100}=7^2\left(7^{98}+7^{97}+7^{96}\right)⋮\left(7^{98}+7^{97}+7^{96}\right)\)

Vậy \(\left(7^{98}+7^{99}+7^{100}\right)⋮\left(7^{98}+7^{97}+7^{96}\right)\left(đpcm\right)\)

Hải Đăng
14 tháng 11 2017 lúc 20:56

Ta có: \(7^{98}+7^{99}+7^{100}=7^2\left(7^{98}+7^{97}+7^{96}\right)⋮\left(7^{98}+7^{97}+7^{96}\right)\)

Vậy \(\left(7^{98}+7^{99}+7^{100}\right)⋮\left(7^{98}+7^{97}+7^{96}\right)\)

\(\rightarrowđpcm\)