Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kwalla
Xem chi tiết
Akai Haruma
11 tháng 9 2023 lúc 19:25

Lời giải:
Ta thấy:

$2x^2+2x+5=2(x^2+x+\frac{1}{4})+\frac{9}{2}$

$=2(x+\frac{1}{2})^2+\frac{9}{2}\geq 0+\frac{9}{2}=\frac{9}{2}$

$\Rightarrow N=\frac{1}{2x^2+2x+5}\leq \frac{2}{9}$

Vậy $N_{\max}=\frac{2}{9}$. Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}$

panda8734
Xem chi tiết
Akai Haruma
3 tháng 2 lúc 22:29

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

Akai Haruma
3 tháng 2 lúc 22:48

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

Akai Haruma
3 tháng 2 lúc 22:50

Câu 3:

$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$

Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$

Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$

Hạ Băng Hoàng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 2 2019 lúc 6:48

Đáp án là C

Hồ Minh Trường
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 10 2021 lúc 15:26

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+4\\ A=\left(x-y\right)^2+\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=1\end{matrix}\right.\Leftrightarrow x=y=1\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 10 2019 lúc 11:26

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 4 2018 lúc 16:36

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 5 2019 lúc 13:42

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 1 2019 lúc 17:53

Đáp án B.

Ta có  4 = 2 x + 2 y ≥ 2 2 x . 2 y = 2 2 x + y

⇔ 4 ≥ 2 x + y ⇔ x + y ≤ 2 .

Suy ra  x y ≤ x + y 2 2 = 1

Khi đó

P = 2 x 3 + y 3 + 4 x 2 y 2 + 10 x y 2 x + y x + y 2 - 3 x y + 2 x y 2 + 10 x y

≤ 4 4 - 3 x y + 4 x 2 y 2 + 10 x y

= 16 + 2 x 2 y 2 + 2 x y x y - 1 ≤ 18

Vậy Pmax = 18 khi x = y = 1.

san dạdy
Xem chi tiết
Lấp La Lấp Lánh
15 tháng 9 2021 lúc 19:43

1) \(M=9x^2-6x+6=\left(9x^2-6x+1\right)+5=\left(3x-1\right)^2+5\ge5\)

\(minM=5\Leftrightarrow x=\dfrac{1}{3}\)

2) \(M=5-2x-x^2=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)

\(maxM=6\Leftrightarrow x=-1\)

3) \(N=5+6x-9x^2=-\left(9x^2-6x+1\right)+6=-\left(3x-1\right)^2+6\le6\)

\(maxN=6\Leftrightarrow x=\dfrac{1}{3}\)