Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hatake Kakashi
Xem chi tiết
Nguyễn Linh Chi
28 tháng 2 2019 lúc 13:30

\(2A=2.2^3+3.2^4+4.2^5+...+100.2^{101}\)

=> \(2A-A=100.2^{101}-\left(2^{100}+2^{99}+...+2^4+2^3\right)-2.2^2\)

Đặt \(B=2^3+2^4+...+2^{100}\Rightarrow2B=2^4+2^5+...+2^{101}\)

=> \(2B-B=2^{101}-2^3\Rightarrow B=2^{101}-2^3\)

=> \(2A-A=100.2^{101}-\left(2^{101}-2^3\right)-2.2^2\)

=> \(A=\left(100.2^{101}-2^{101}\right)+2^3-2^3\)=\(99.2^{101}\)

Trần Tuấn	Phong
7 tháng 9 2024 lúc 10:06

helllo

\

Trần Tuấn	Phong
7 tháng 9 2024 lúc 10:07

skibidi

 

Nguyễn Trọng Việt
Xem chi tiết
anh nguyen tuan anh
Xem chi tiết
Nguyễn Lê Đăng Tín
17 tháng 11 2021 lúc 9:08

B=2.22+3.23+4.24+......+10.210

Hãy so sánh B với 214

Nhanh nhất, cụ thể và đúng nhất, 10k

Khách vãng lai đã xóa
Đỗ Minh Hằng
Xem chi tiết
Đỗ Ngọc Hải
26 tháng 8 2015 lúc 14:47

Chắc mình phải lấy giấy vệ sinh thắt cổ tự tủ mất

Clgt
Xem chi tiết
Clgt
Xem chi tiết
Bé Chanh
Xem chi tiết
Kiệt Nguyễn
1 tháng 8 2019 lúc 9:07

Đặt \(A=2.2^2+3.2^3+4.2^4+5.2^5+...+n.2^n\)

\(\Rightarrow2A=2.2^3+3.2^4+4.2^5+5.2^6+...+n.2^{n+1}\)

\(\Rightarrow2A-A=2.2^3+3.2^4+4.2^5+5.2^6+...+n.2^{n+1}\)

\(-2.2^2-3.2^3-4.2^4-5.2^5-...-n.2^n\)

\(A=n.2^{n+1}-2^3-\left(2^3+2^4+...+2^n\right)\)

Đặt \(M=\left(2^3+2^4+...+2^n\right)\)

\(\Rightarrow2M=\left(2^4+2^5+...+2^{n+1}\right)\)

\(\Rightarrow M=2^{n+1}-2^3\)

\(\Rightarrow A=n.2^{n+1}-2^3-2^{n+1}+2^3\)

\(\Rightarrow A=\left(n-1\right)2^{n+1}=2^{n+10}\)

\(\Rightarrow\left(n-1\right)=2^9\)

\(\Rightarrow n=513\)

Bé Chanh
Xem chi tiết
???????
1 tháng 8 2019 lúc 10:42

Đặt \(A=2.2^2+3.2^3+4.2^4+...+n.2^n=2^{n+10}\)

\(\Rightarrow2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)

\(\Rightarrow2A-A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}-2.2^2-3.2^3-4.2^4-...-n.2^n\)

\(\Leftrightarrow A=-2.2^2+\left(2.2^3-3.2^3\right)+\left(3.2^4-4.2^4\right)+...+[\left(n-1\right)2^n-n.2^n]+n.2^{n+1}\)

\(\Leftrightarrow A=-2.2^2-2^3-2^4-...-2^n+n.2^{n+1}\)

\(\Leftrightarrow A=-2^3-\left(2^4-2^3\right)-\left(2^5-2^4\right)-...-\left(2^{n+1}-2^n\right)+n.2^{n+1}\)

\(\Leftrightarrow A=-2^3-2^4+2^3-2^5+2^4-...-2^{n+1}+2^n+n.2^{n+1}\)

\(\Leftrightarrow A=-2^{n+1}+n.2^{n+1}\)

\(\Leftrightarrow A=2^{n+1}\left(n-1\right)\)

Mà \(A=2^{n+10}=2^{n+1}.2^9=2^{n+1}.512\)

\(\Rightarrow n-1=512\)

\(\Rightarrow n=513\)

❄️Lunar Starlight
Xem chi tiết
Hoàng Quốc Huy
12 tháng 10 2016 lúc 15:24

Ủa câu này bạn phải đăng lên chuyên mục Toán chứ?