rút gọn
\(\frac{x-4}{x-4\sqrt{x}+4}\)-\(\frac{x+2\sqrt{x}}{x-4}\)
rút gọn Q= ($\frac{\sqrt{x+2} }{x-2\sqrt{x}+4 }$ - $\frac{x-\sqrt{x} }{x\sqrt{x} +8 }$ ). $\frac{5x-10\sqrt{x}+20 }{5\sqrt{x}+4}$
Tử số của phân số đầu phải là \(\sqrt{x}+2\) chứ không phải \(\sqrt{x+2}\), vì cái \(\sqrt{x}+2\) nó mới logic để rút gọn: )
\(Q=\left(\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}^3+8}-\dfrac{x-\sqrt{x}}{\sqrt{x}^3+8}\right)\left(\dfrac{5x-10\sqrt{x}+20}{5\sqrt{x}+4}\right)\\ =\left(\dfrac{x+4\sqrt{x}+4-x+\sqrt{x}}{\sqrt{x}^3+8}\right)\left(\dfrac{5x-10\sqrt{x}+20}{5\sqrt{x}+4}\right)\\ =\dfrac{\left(5\sqrt{x}+4\right).5.\left(x-2\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)\left(5\sqrt{x}+4\right)}\\ =\dfrac{5}{\sqrt{x}+2}\)
Rút gọn biểu thức
\(\left(\frac{\sqrt{x}+1}{x+4\sqrt{x}+4}-\frac{\sqrt{x}-1}{x-4}\right).\frac{\sqrt{x}+2}{\sqrt{x}}\)
A=\(\frac{x\sqrt{x}-2x-49}{x+3\sqrt{x}-4}-\frac{\sqrt{x}-4}{\sqrt{x}+4}-\frac{2\sqrt{x}+8}{\sqrt{x}-1}\)
Rút gọn A
Rút gọn biểu thức :
\(D=\frac{x+2+\sqrt{x^2+4}}{x+2-\sqrt{x^2-4}}+\frac{x+2-\sqrt{x^2}-4}{x+2+\sqrt{x^2}-4}\)
\(Q=\frac{1}{x^2-\sqrt{x}}:\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{2\sqrt{x}}{\sqrt{x}-2}-\frac{3x+4}{x-4}\) với \(x\ge 0\);x#4
a,Rút gọn A
b,Tìm giá trị của x để A=\(\frac{1}{2}\)
a: \(A=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+2\sqrt{x}\left(\sqrt{x}+2\right)-3x-4}{x-4}\)
\(=\dfrac{x-2\sqrt{x}+2x+4\sqrt{x}-3x-4}{x-4}\)
\(=\dfrac{2\sqrt{x}-4}{x-4}=\dfrac{2}{\sqrt{x}+2}\)
b: A=1/2
=>\(\sqrt{x}+2=4\)
=>\(\sqrt{x}=2\)
=>x=4(loại)
rút gọn biểu thức
\(\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x+4}}}{\frac{16}{x^2}-\frac{8}{x}+1}\)
\(\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\frac{16}{\frac{16}{x^2}-\frac{8}{x}+1}}\)\(=\frac{\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}}{\left(\frac{4}{x}-1\right)^2}\)
\(\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\left(\frac{4}{x}-1\right)^2}\)\(=\frac{\sqrt{x-4}+2+\sqrt{x-4}-2}{\left(\frac{4-x}{x}\right)^2}\)
\(=\frac{2\sqrt{x-4}}{\left(\frac{4-x}{x}\right)^2}=\frac{2x^2\sqrt{x-4}}{\left(x-4\right)^2}=\frac{2x^2}{\sqrt{x-4}^3}\)
bài bạn YIM YIM sai nhé, mk làm lại và chỉnh lại đề luôn, bạn tham khảo:
ĐK: \(x>4\)
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\frac{16}{x^2}-\frac{8}{x}+1}\)
\(=\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\left(1-\frac{4}{x}\right)^2}\)
\(=\frac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{\left(\frac{x-4}{x}\right)^2}\)
Nếu \(4< x\le8\)thì:
\(A=\frac{\sqrt{x-4}+2+2-\sqrt{x-4}}{\left(\frac{x-4}{x}\right)^2}\)
\(=\frac{4x^2}{\left(x-4\right)^2}\)
Nếu \(x>8\)thì:
\(A=\frac{\sqrt{x-4}+2+\sqrt{x-4}-2}{\frac{\left(x-4\right)^2}{x^2}}=\frac{2x^2}{\sqrt{x-4}^3}\)
Rút gọn biểu thức:
\(Q=\left(\frac{x-\sqrt{x}+7}{x-4}+\frac{1}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x-4}\right)\)
đkxđ: \(x\ge0;x\ne4\)
\(Q=\left[\frac{x-\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}\right]\div\left[\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right]\)
\(Q=\left[\frac{x-\sqrt{x}+7+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right]\div\left[\frac{\left(\sqrt{x}+2\right)^2-\left(\sqrt{x}-2\right)^2-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right]\)
\(Q=\frac{x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\div\frac{x+4\sqrt{x}+4-x+4\sqrt{x}-4-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(Q=\frac{x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{6\sqrt{x}}\)
\(Q=\frac{\left(x+9\right)\sqrt{x}}{6x}\)
\(Q=\frac{x\sqrt{x}+9\sqrt{x}}{6x}\)
đkxđ sửa tí thành \(\hept{\begin{cases}x>0\\x\ne4\end{cases}}\)
rút gọn biểu thức C
C=\(\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}+\frac{18\sqrt{x}}{4-x}\right):\frac{x+9}{4-x}\)
Điều kiện xác định \(0\le x\ne4\)
\(C=\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}+\frac{18\sqrt{x}}{4-x}\right):\frac{x+9}{4-x}\)
\(=\frac{\left(\sqrt{x}+2\right)^2-\left(\sqrt{x}-2\right)^2-18\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{x+9}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+4\sqrt{x}+4-\left(x-4\sqrt{x}+4\right)-18\sqrt{x}}{-\left(x+9\right)}\)
\(=\frac{10\sqrt{x}}{x+9}\)
Rút gọn:
\(\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}\)+\(\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
\(\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
\(=\frac{\left(x+2+\sqrt{x^2-4}\right)^2+\left(x+2-\sqrt{x^2-4}\right)^2}{\left(x+2+\sqrt{x^2-4}\right)\left(x+2-\sqrt{x^2-4}\right)}\)
\(=\frac{\left(x^2+4+x^2-4+4x+2\sqrt{x^2-4}+x\sqrt{x^2-4}\right)+\left(x^2+4+x^2-4+4x-2\sqrt{x^2-4}-x\sqrt{x^2-4}\right)}{x^2+2x-x\sqrt{x^2-4}+2x+4-2\sqrt{x^2-4}+x\sqrt{x^2-4}+2\sqrt{x^2-4}-x^2+4}\)\(=\frac{4x^2+8x}{4x+8}=\frac{4x\left(x+2\right)}{4\left(x+2\right)}=x\)
\(DK:x\ne1,-1,-2\)
\(\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
\(=\frac{\left(x+2+\sqrt{x^2-4}\right)^2+\left(x+2-\sqrt{x^2-4}\right)}{\left(x+2\right)^2-x^2+4}\)
\(=\frac{\left(x+2\right)^2+2\left(x+2\right)\sqrt{x^2-4}+x^2-4+\left(x+2\right)^2-2\left(x+2\right)\sqrt{x^2-4}+x^2-4}{4x+8}\)
\(=\frac{4x^2+8x-8}{4x+8}\)
\(=\frac{x^2+2x-2}{x+2}\)
Minh nham r sr
\(\frac{4x^2+8x}{x+2}=\frac{4x\left(x+2\right)}{4\left(x+2\right)}=x\)
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
Rút gọn rồi tìm x nguyên đẻ A nguyên