Cho a+b+c=2p.Chứng minh:
2bc+b^2+c^2-a^2=4p(p-a)
Cho a+b+c=2p.Chứng minh:
2bc+b^2+c^2-a^2=4(p-a)
VP =4p(p-a)
=2p(2p-2a)
=(a+b+c)(a+b+c-2a)
=(a+b+c)(b+c-a)
VT= 2bc+b^2+c^2-a^2
=(b+c)^2-a^2
=(b+c-a)(b+c+a)
Ta có:VT=VP (Đpcm)
Cho a+b+c=2p.Chứng minh hằng đẳng thức:
2ab+b2+c2-a2=4p(p-a)
Ta có:
\(VP=4p\left(p-a\right)=2p.2p-2a.2p\)(1)
Thay \(a+b+c=2p\) vào (1) ta có:
\(\left(a+b+c\right)^2-2a.\left(a+b+c\right)\)
\(=a^2+b^2+c^2+2ab+2ac+2bc-2a^2-2ab-2ac\)
\(=-a^2+b^2+c^2+2bc=VT\)
Vậy \(2ab+b^2+c^2-a^2=4p\left(p-a\right)\)(đpcm)
Chúc bạn học tốt!!!
Ta có:a+b+c=2p=>b+c=2p-a=>b+c-a=2p-2a
Ta lại có:4p(p-a)=2p(2p-2a)=2(a+b+c)(b+c-a)=ab+ac-a2+b2+bc-ab+bc+c2-ac
=2ab+b2+c2-a2(đpcm)
Ta có: a+b+c = 2p thì:
2ab+b2+c2-a2 = 4p(p-a)
<=> 2ab+b2+c2-a2 = 2p(2p-2a)
<=> 2ab+b2+c2-a2 = (a+b+c)(b+c-a)
<=> 2ab+b2+c2-a2 = ab+ac+(-a)2+b2+bc-ab+bc+c2-ac
<=> 2ab+b2+c2-a2 = 2ab+b2+c2-a2
Vây: 2ab+b2+c2-a2 = 4p(p-a)
Cho \(a+b+c=2p\). Chứng minh rằng:
\(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
\(2bc+b^2+c^2-a^2\)
\(=\left(b+c\right)^2-a^2\)
\(=\left(b+c+a\right)\cdot\left(b+c-a\right)\)
\(=2p\cdot\left(2p-a-a\right)\)
\(=4p\left(p-a\right)\)
Cho a + b + c = 2p. C/minh đẳng thức: \(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
Gọi \(2bc+b^2 +c^2-a^2=VT\)
và \(4p\left(p-a\right)=VP\)
Biến đổi VP ta có :
\(4p\left(p-a\right)=2p\left(2p-2a\right)\)
\(=\left(a+b+c\right)\left(b-c-a\right)\)
\(=2bc+b^2+c^2-a^2=VT\) (đpcm)
Vậy ......
cho a+b+c=2p
chứng minh rằng 2bc+ b2+c2- a2 = 4p(p- a)
TC:a+b+cd=2p=>b+c=2p-a
=>(b+c)2=(2p-a)2
=>b2+2bc+c2=4p2-4pa+a2
=>b2+2bc+c2-a2=4p2-4pa
=>2bc+b2+c2-a2=4p(p-a) ĐPCM
Cho a + b + c = 2p. C/minh đẳng thức: \(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
Ta có: \(a+b+c=2p\)
\(\Rightarrow b+c=2p-a\Rightarrow\left(b+c\right)^2=\left(2p-a\right)^2\)
\(\Rightarrow b^2+2bc+c^2=4p^2-4pa+a^2\)
\(\Rightarrow2bc+b^2+c^2-a^2=4p\left(p-a\right)\)(đpcm)
Vậy....
Ta có :
VT = \(2bc+b^2+c^2-a^2\)
\(=\left(b+c\right)^2-a^2\)
\(=\left(b+c-a\right)\left(b+c+a\right)\)
\(=\left(b+c+a-2a\right).2p\)
\(=\left(2p-2a\right).2p\)
\(=4p\left(p-a\right)=VP\)
\(\left(đpcm\right)\)
Cho a + b + c = 2p.Chứng minh rằng :
a)a2 - b2 - c2 + 2bc = 4 ( p - b) (p - c)
b)p2 + (p - a)2 + (p - b)2 + (p - c)2 = a2 + b2 +c2
<giúp mk nha mk đang cần gấp>
Cho a+b+c = 2p . Chứng minh rằng đẳng thức : \(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
\(2bc+b^2+c^2-a^2\)
\(=\left(b+c\right)^2-a^2\)
\(=\left(a+b+c\right)\left(b+c-a\right)\)
\(=2p\left(a+b+c-2a\right)\)
\(=2p\left(2p-2a\right)=4p\left(p-a\right)\)
biến đổi vế phải ta được:
4p(p -a ) = 4p\(^2\)-4pa
=(2p)\(^2\)-2p.2a
=(a+b+c)\(^2\)-2a(a+b+c)
=\(a^2+b^2+c^2+2ab+2ac+2bc\)-\(2a^2-2ab-2ac\)
=\(2bc+b^2+c^2-a^2\)=vế trái (đpcm)
Cho a+b+c= 2p. Chứng minh hằng đẳng thức
2bc + b2 + c2 -a2 = 4p(p-a)
a+b+c = 2p => 4p = 2(a+b+c); p=(a+b+c)/2
VP = 4p(p-a) = 2(a+b+c)(\(\frac{a+b+c}{2}-a\))
= \(2\left(a+b+c\right)\left(\frac{a+b+c-2a}{2}\right)\)
=\(2\left(a+b+c\right)\cdot\frac{b+c-a}{2}=\left(a+b+c\right)\left(b+c-a\right)\)
\(=ab+ac-a^2+b^2+bc-ab+bc+c^2-ac\)
\(=2bc+b^2+c^2-a^2\) = VT (đpcm)