\(\lim\limits_{x\rightarrow2}\dfrac{2x^3+5x^2-7x+2}{x^2-3x+2}\)
\(a,\lim\limits_{x\rightarrow2}\dfrac{x^3+2x^2-6x-4}{8-x^3}\)
\(b,\lim\limits_{x\rightarrow2}\dfrac{x^3+x^2-5x-2}{x^2-3x+2}\)
a: \(=lim_{x->2}\dfrac{x^3-2x^2+4x^2-8x+2x-4}{-\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=lim_{x->2}\dfrac{\left(x-2\right)\left(x^2+4x+2\right)}{-\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=lim_{x->2}\dfrac{-x^2-4x-2}{x^2+2x+4}\)
\(=lim_{x->2}\dfrac{-1-\dfrac{4}{x}-\dfrac{2}{x^2}}{1+\dfrac{2}{x}+\dfrac{4}{x^2}}=\dfrac{-1}{1}=-1\)
b: \(lim_{x->2}\dfrac{x^3-2x^2+3x^2-6x+x-2}{\left(x-2\right)\left(x-1\right)}\)
\(=lim_{x->2}\dfrac{\left(x-2\right)\left(x^2+3x+1\right)}{\left(x-2\right)\left(x-1\right)}\)
\(=lim_{x->2}\dfrac{x^2+3x+1}{x-1}\)
\(=lim_{x->2}\dfrac{1+\dfrac{3}{x}+\dfrac{1}{x^2}}{\dfrac{1}{x}-\dfrac{1}{x^2}}\)
lim(1+3/x+1/x^2)=1>0
lim(1/x-1/x^2)=(x-1)/x^2<0
=>lim=dương vô cực
\(\lim\limits_{x\rightarrow0}\dfrac{\left(1+3x\right)^3-\left(1-4x\right)^4}{x}\)
\(\lim\limits_{x\rightarrow2}\dfrac{2x^2-5x+2}{x^3-3x-2}\)
\(\lim\limits_{x\rightarrow1}\dfrac{x^4-3x+2}{x^3+2x-3}\)
1/ \(=\lim\limits_{x\rightarrow0}\dfrac{3\left(1+3x\right)^2.3+4.4\left(1-4x\right)^3}{1}=...\left(thay-x-vo\right)\)
2/ \(=\lim\limits_{x\rightarrow2}\dfrac{2.2.x-5}{3x^2-3}=\dfrac{4.2-5}{3.4-3}=\dfrac{1}{3}\)
3/ \(=\lim\limits_{x\rightarrow1}\dfrac{4x^3-3}{3x^2+2}=\dfrac{4.1-3}{3.1-2}=1\)
Xai L'Hospital nhe :v
\(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x-2}-\dfrac{12}{x^3-8}\right)\)
\(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}\right)\)
\(\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{x^2+1}-x\right)\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+1}-\sqrt[3]{x^3-1}\right)\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}\)
Em là tám lại ạ
Em là duy khôi ạ
Em là văn tam ạ
Em là mạnh Tuấn ạ
a: \(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x-2}-\dfrac{12}{x^3-8}\right)\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+2x+4-12}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+2x-8}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x+4}{x^2+2x+4}\)
\(=\dfrac{2+4}{2^2+2\cdot2+4}=\dfrac{6}{4+4+4}=\dfrac{6}{12}=\dfrac{1}{2}\)
b: \(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}\right)\)
\(=\lim\limits_{x\rightarrow2}\left(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\lim\limits_{x\rightarrow2}\left(\dfrac{x-3+x-1}{\left(x-2\right)\left(x-3\right)\left(x-1\right)}\right)\)
\(=\lim\limits_{x\rightarrow2}\dfrac{2x-4}{\left(x-2\right)\left(x-3\right)\left(x-1\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{2}{\left(x-3\right)\left(x-1\right)}=\dfrac{2}{\left(2-3\right)\left(2-1\right)}=-2\)
d: \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+1}-\sqrt[3]{x^3-1}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+1}-x+x-\sqrt[3]{x^3-1}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+1-x^2}{\sqrt{x^2+1}+x}+\dfrac{x^3-x^3+1}{\sqrt[3]{x^2}+x\cdot\sqrt[3]{x^3-1}+\sqrt[3]{\left(x^3-1\right)^2}}\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{x^2+1}+x}+\dfrac{1}{\sqrt[3]{x^2}+x\cdot\sqrt[3]{x^3-1}+\sqrt[3]{\left(x^3-1\right)^2}}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\dfrac{1}{x}}{\sqrt{1+\dfrac{1}{x^2}}+1}+\dfrac{\dfrac{1}{x^2}}{\sqrt[3]{\dfrac{1}{x^4}}+\sqrt[3]{1-\dfrac{1}{x^3}}+\sqrt[3]{\left(1-\dfrac{1}{x^3}\right)^2}}\right)\)
=0
c: \(\lim\limits_{x\rightarrow+\infty}\left[x\cdot\left(\sqrt{x^2+1}-x\right)\right]\)
\(=\lim\limits_{x\rightarrow+\infty}\left[x\cdot\dfrac{x^2+1-x^2}{\sqrt{x^2+1}+x}\right]\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{x}{\sqrt{x^2+1}+x}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}+1}=\dfrac{1}{1+1}=\dfrac{1}{2}\)
e: \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{x^2+1-1}{\sqrt{x^2+1}+1}:\dfrac{x^2+16-16}{\sqrt{x^2+16}+4}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+16}+4}{\sqrt{x^2+1}+1}=\dfrac{4+4}{1+1}=\dfrac{8}{2}=4\)
Tính giới hạn
a) \(\lim\limits_{x\rightarrow2}\dfrac{x+3}{x^2+x+4}=\dfrac{1}{2}\)
b) \(\lim\limits_{x\rightarrow-3}\dfrac{x^2+5x+6}{x^2+3x}=\dfrac{1}{3}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow2}\dfrac{x+3}{x^2+x+4}=\dfrac{1}{2}\)
b) \(\lim\limits_{x\rightarrow-3}\dfrac{x^2+5x+6}{x^2+3x}=\dfrac{1}{3}\)
a/ \(\lim\limits_{x\rightarrow2}\dfrac{2+3}{4+2+4}=\dfrac{5}{10}=\dfrac{1}{2}\)
b/ \(\lim\limits_{x\rightarrow-3}\dfrac{\left(x+2\right)\left(x+3\right)}{x\left(x+3\right)}=\lim\limits_{x\rightarrow-3}\dfrac{x+2}{x}=\dfrac{-3+2}{-3}=\dfrac{1}{3}\)
\(\lim\limits_{x\rightarrow2}\dfrac{x-\sqrt{x+2}}{x-\sqrt[3]{3x+2}}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+2x}-\sqrt[3]{1+3x}}{x^2}\)
\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{5+4x}-\sqrt[3]{7+6x}}{x^3+x^2-x-1}\)
\(a=\lim\limits_{x\rightarrow2}\dfrac{\left(x^2-x-2\right)\left(x^2+x\sqrt[3]{3x+2}+\sqrt[3]{\left(3x+2\right)^2}\right)}{\left(x^3-3x-2\right)\left(x+\sqrt[]{x+2}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+1\right)\left(x^2+x\sqrt[3]{3x+2}+\sqrt[3]{\left(3x+2\right)^2}\right)}{\left(x-2\right)\left(x+1\right)^2\left(x+\sqrt[]{x+2}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+x\sqrt[3]{3x+2}+\sqrt[3]{\left(3x+2\right)^2}}{\left(x+1\right)\left(x+\sqrt[]{x+2}\right)}=...\)
\(b=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt[]{1+2x}-x-1\right)+\left(x+1-\sqrt[3]{1+3x}\right)}{x^2}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{x^2}{\sqrt[]{1+2x}+x+1}+\dfrac{x^3+3x^2}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}}{x^2}\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{1}{\sqrt[]{1+2x}+x+1}+\dfrac{x+3}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}\right)\)
\(=...\)
\(c=\lim\limits_{x\rightarrow-1}\dfrac{\left(\sqrt[]{5+4x}-2x-3\right)+\left(2x+3-\sqrt[3]{7+6x}\right)}{x^3+x^2-x-1}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{5+4x-\left(2x+3\right)^2}{2x+3+\sqrt[]{5+4x}}+\dfrac{\left(2x+3\right)^3-\left(7+6x\right)}{\left(2x+3\right)^2+\left(2x+3\right)\sqrt[3]{7+6x}+\sqrt[3]{\left(7+6x\right)^2}}}{\left(x-1\right)\left(x+1\right)^2}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{-4\left(x+1\right)^2}{2x+3+\sqrt[]{5+4x}}+\dfrac{\left(x+1\right)^2\left(8x+20\right)}{\left(2x+3\right)^2+\left(2x+3\right)\sqrt[3]{7+6x}+\sqrt[3]{\left(7+6x\right)^2}}}{\left(x-1\right)\left(x+1\right)^2}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{-4}{2x+3+\sqrt[]{5+4x}}+\dfrac{8x+20}{\left(2x+3\right)^2+\left(2x+3\right)\sqrt[3]{7+6x}+\sqrt[3]{\left(7+6x\right)^2}}}{x-1}\)
\(=...\)
Tính các giới hạn :
a) \(\lim\limits_{x\rightarrow1}\dfrac{4x^5+9x+7}{3x^6+x^3+1}\)
b) \(\lim\limits_{x\rightarrow2}\dfrac{x^3+3x^2-9x-2}{x^3-x-6}\)
c) \(\lim\limits_{x\rightarrow-1}\dfrac{x+1}{\sqrt{6x^2+3}+3x}\)
d) \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{9+5x+4x^2}-3}{x}\)e) \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt[3]{10-x}-2}{x-2}\)
f) \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x+8}-\sqrt{8x+1}}{\sqrt{5-x}-\sqrt{7x-3}}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow2}\dfrac{1-\sqrt{x^2+3}}{-x^2+3x-2}\)
b, \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{4x-1}+3}{x^2-4}\)
a: \(\lim\limits_{x\rightarrow2}\dfrac{1-\sqrt{x^2+3}}{-x^2+3x-2}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x^2+3}-1}{x^2-3x+2}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\sqrt{2^2+3}-1}{2^2-3\cdot2+2}\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow2}\sqrt{2^2+3}-1=\sqrt{7}-1>0\\\lim\limits_{x\rightarrow2}2^2-3\cdot2+2=0\end{matrix}\right.\)
b: \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{4x-1}+3}{x^2-4}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{4x-1-9}{\sqrt{4x-1}-3}\cdot\dfrac{1}{x^2-4}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{4x-10}{\sqrt{4x-1}-3}\cdot\dfrac{1}{\left(x-2\right)\left(x+2\right)}\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow2}\dfrac{4x-10}{\sqrt{4x-1}-3}=\dfrac{4\cdot2-10}{\sqrt{4\cdot2-1}-3}=\dfrac{-2}{\sqrt{7}-3}>0\\\lim\limits_{x\rightarrow2}\dfrac{1}{\left(x-2\right)\cdot\left(x+2\right)}=\dfrac{1}{\left(2+2\right)\cdot\left(2-2\right)}=+\infty\end{matrix}\right.\)
tính giới hạn
a) \(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{2x+8}-4}{x-4}\)
b) \(\lim\limits_{x\rightarrow2}\dfrac{x^2-4}{\sqrt{4x+1}-3}\)
c) \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{2-\sqrt{x+2}}\)
a: \(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{2x+8}-4}{x-4}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{2x+8-16}{\sqrt{2x+8}+4}\cdot\dfrac{1}{x-4}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{2\left(x-4\right)}{\sqrt{2x+8}+4}\cdot\dfrac{1}{x-4}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{2}{\sqrt{2x+8}+4}=\dfrac{2}{\sqrt{2\cdot4+8}+4}\)
\(=\dfrac{2}{\sqrt{8+8}+4}=\dfrac{2}{4+4}=\dfrac{2}{8}=\dfrac{1}{4}\)
b: \(\lim\limits_{x\rightarrow2}\dfrac{x^2-4}{\sqrt{4x+1}-3}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)}{\dfrac{4x+1-9}{\sqrt{4x+1}+3}}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)}{4\left(x-2\right)}\cdot\left(\sqrt{4x+1}+3\right)\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x+2\right)\left(\sqrt{4x+1}+3\right)}{4}\)
\(=\dfrac{\left(2+2\right)\left(\sqrt{4\cdot2+1}+3\right)}{4}=\sqrt{9}+3=6\)
c: \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{2-\sqrt{x+2}}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x-2}{\dfrac{4-x-2}{2+\sqrt{x+2}}}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x-2}{2-x}\cdot\left(\sqrt{x+2}+2\right)\)
\(=\lim\limits_{x\rightarrow2}\left(-\sqrt{x+2}-2\right)\)
\(=-\sqrt{2+2}-2=-2-2=-4\)