Chứng minh rằng 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
1.Tìm số tự nhiên n để:
a, 2n+1 và 7n+2 là 2 số nguyên tố cùng nhau.
b,9n+24 và 3n+4 là 2 số nguyên tố cùng nhau.
2.Chứng minh rằng 2n+1 và 3n+1 (n là số tự nhiên) là 2 số nguyên tố cùng nhau.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Chứng minh rằng:
a) 3n+7 và 5n+12 là 2 số nguyên tố cùng nhau
b) 2n+1 và 2n+3 là 2 số nguyên tố cùng nhau
a) Gọi UCLN \(3n+7\)và \(5n+12\)là \(d\)
\(\Rightarrow\left(3n+7\right)⋮d\)và \(\left(5n+12\right)⋮d\)
Xét 2 biểu thức :
\(\Rightarrow\left(3n+7\right).5⋮d\Rightarrow15n+35⋮d\)
\(\Rightarrow\left(5n+12\right).3⋮d\Rightarrow15n+36⋮d\)
\(\Rightarrow\left(15n+37-15n-36\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow3n+7;5n+12\)nguyên tố cùng nhau.
Chứng minh rằng số tự nhiên n là các số nguyên tố cùng nhau:
a) 2n+1 và 3n+2
b)2n+2 và 5n+3 c) 3n+1 và 4n+1
a)nếu 2n+1 và 3n+2 là các số nguyên tố cùng nhau thì chúng phải có ƯCLN =1
giả sử ƯCLN(2n+1,3n+2)=d
=>2n+1 chia hết cho d , 3n+2 chia hết cho d
=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d
=>6n+3 chia hết cho d, 6n +4 chia hết cho d
=>(6n+4) - (6n+3) chia hết cho d
=>6n+4-6n-3=1 chia hết cho d
=>d=1
vậy ƯCLN(2n+1,3n+2)=1 (đpcm)
đpcm là điều phải chứng minh
Chứng minh rằng:
a) 2n+1 và 3n+2 là hai số nguyên tố cùng nhau
b) 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
gọi a là ước chung lớn nhất của 2n+1 và 3n+2
do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1
hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.
b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5
do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1
hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
chứng minh rằng 2n+1 và 3n+1 là hai số nguyên tố cùng nhau
Gọi d là ước chung lớn nhất của 2n+1 và 3n+1 ta được:
\(\left\{{}\begin{matrix}\left(2n+1\right)⋮d\\\left(3n+1\right)⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+1\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(6n+3\right)⋮d\\\left(6n+2\right)⋮d\end{matrix}\right.\Rightarrow\left[\left(6n+3\right)-\left(6n+2\right)\right]⋮d\)
\(\Rightarrow\left(6n+3-6n-2\right)⋮d\Rightarrow1⋮d\)
Do đó: \(d=\pm1\)
\(\LeftrightarrowƯCLN\left(2n+1;3n+1\right)=1\)
Vậy \(2n+1\) và \(3n+1\) là nguyên tố cùng nhau.
Gọi d là ƯCLN(2n+1,3n+1)
Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\3n+1⋮d\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+1\right)⋮d\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+2⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Leftrightarrow1⋮d\Leftrightarrow d=\pm1\)
=> ƯCLN(2n+1,3n+1)=1
=> đpcm
Chứng minh rằng:
a) Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b) Hi số ller liên tiếp là hai số nguyên tố cùng nhau
c) 2n+1 và 3n + 1 (n thuộc N) là hai số nguyên tố cùng nhau
d) 2n+5 và 3n+7 nguyên tố cùng nhau
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
Tìm số tự nhiên n chứng minh rằng 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau
Gọi ƯCLN(2n + 1,3n + 2) = d
=> Ta có: \(\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)=> \(\hept{\begin{cases}3.\left(2n+1\right)⋮d\\2.\left(3n+2\right)⋮d\end{cases}}\)=> \(\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
=> \(\left(6n+4\right)-\left(6n+3\right)⋮d\)
=> \(6n+4-6n-3⋮d\)
=> \(1⋮d\)
=> \(d=1\)
=> 2n + 1 ; 2n + 2 là 2 số nguyên tố cùng nhau
chứng minh rằng :
2n+1 và 3n+1 là số nguyên tố cùng nhau
Chứng minh rằng 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
Giải hộ mình nha+-+
Gọi a là ước chung của ( 2n+1 ) và ( 3n +1)
Suy ra ( 2n+1 ) chia hết cho a và ( 3n +1) chia hết cho a
3. ( 2n+1 )-2. ( 3n +1) chia hết cho a
Hay 1 chia hết cho a suy ra a=1. Vậy ƯCLN của 2 số đó =1
Ta có :
gọi k là UCLN của 2n+1 và 3n+1
=> 3(2n+1) \(⋮k\)
=> 2(3n+1)\(⋮k\)
=> 3(2n+1)-2(3n+1)\(⋮k\)
=> 1\(⋮k\)
Vì k >o
=> k=1
=> đpcm
Gọi d \(\in\)ƯCLN (2n + 1 ; 3n + 1)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+2⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau