Từ điểm M ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến MI và MK tới đường tròn (O).
Chứng minh rằng: 4 điểm M, I, O, K cùng thuộc 1 đường tròn
cho đường tròn (O;R) và đường thẳng a ở ngoài đường thẳng a ở ngoài đường tròn. Gọi OH là khoảng cách từ tâm O đếna và M là một điểm chuyển động trên a. Từ M kẻ hai tiếp tuyến MA,MB với đường tròn (O) , (A,B là 2 tiếp điểm). Gọi D là giao điểm của AB với OH.CMR D là điểm cố định
Trả lời :
Bn Nguyễn Tũn bảo dễ ẹt thì làm đi.
- Hok tốt !
^_^
dễ ẹc thì lm cho mk coi đi
mk ko bt lm
Từ điểm M ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến MA, MB và cát tuyến MNP tới
đường tròn (O); gọi K là trung điểm của NP. Chứng minh rằng: 5 điểm M, A, O, K, B cùng thuộc
1 đường tròn
Lời giải:
Vì $MA,MB$ là tiếp tuyến của $O$ nên $MA\perp OA, MB\perp OB$
$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$
Xét tứ giác $MAOB$ có $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$. Mà 2 góc này đối nhau nên $MAOB$ là tứ giác nội tiếp.
$\Rightarrow M, A,O,B$ cùng thuộc 1 đường tròn (1)
Mặt khác:
Tam giác $ONP$ cân tại $O$ (do $ON=OP=R$) nên trung tuyến $OK$ đồng thời là đường cao.
$\Rightarrow \widehat{MKO}=90^0$
Xét tứ giác $MAKO$ có $\widehat{MAO}=\widehat{MKO}=90^0$. Mà 2 góc này cùng nhìn cạnh $MO$ nên $MAKO$ là tứ giác nội tiếp.
$\Rightarrow M,A,K,O$ cùng thuộc 1 đường tròn (2)
Từ $(1); (2)\Rightarrow M, A, O, K,B$ cùng thuộc 1 đường tròn.
Từ điểm M ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến MA, MB và cát tuyến MNP tới
đường tròn (O); gọi K là trung điểm của NP. Chứng minh rằng: 5 điểm M, A, O, K, B cùng thuộc
1 đường tròn
Lời giải:
Vì $MA,MB$ là tiếp tuyến của $O$ nên $MA\perp OA, MB\perp OB$
$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$
Xét tứ giác $MAOB$ có $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$. Mà 2 góc này đối nhau nên $MAOB$ là tứ giác nội tiếp.
$\Rightarrow M, A,O,B$ cùng thuộc 1 đường tròn (1)
Mặt khác:
Tam giác $ONP$ cân tại $O$ (do $ON=OP=R$) nên trung tuyến $OK$ đồng thời là đường cao.
$\Rightarrow \widehat{MKO}=90^0$
Xét tứ giác $MAKO$ có $\widehat{MAO}=\widehat{MKO}=90^0$. Mà 2 góc này cùng nhìn cạnh $MO$ nên $MAKO$ là tứ giác nội tiếp.
$\Rightarrow M,A,K,O$ cùng thuộc 1 đường tròn (2)
Từ $(1); (2)\Rightarrow M, A, O, K,B$ cùng thuộc 1 đường tròn.
Cho đường tròn (O). Từ điểm A bên ngoài đường tròn vẽ 2 tiếp tuyến AB ,AC với đường tròn (B,C là các tiếp điểm).Đường thẳng kẻ qua C song song với AB cắt đường tròn (O) ở D ,AD cắt (O) ở M ,CM cắt AB ở N. Chứng minh:
a) Góc BAD=góc ACN
b)\(^{AN^{ }2}\)=NM.NC
C)N là trung điểm của AB.
Cho đường tròn O từ điểm A bên ngoài đường tròn, kẽ tiếp tuyến AB, AC đường thẳng qua C // AB cắt đường tròn ở D, AD cắt đường tròn O ở M, CM cắt AB ở N a, góc BAD = góc ACN b, AN2 = NM* NC
a: góc ACN=1/2*sđ cung MC
góc BAD=góc MDC=1/2*sđ cung MC
=>góc ACN=góc BAD
b: Xét ΔNAM và ΔNCA có
góc NAM=góc NCA
góc N chung
=>ΔNAM đồng dạng với ΔNCA
=>NA/NC=NM/NA
=>NA^2=NM*NC
Cho đường tròn (O) điểm M nằm bên ngoài đường tròn, từ M kẻ tiếp tuyến MA (A là tiếp điểm) và cát tuyến MBC tới đường tròn, Phân giác của góc BAC cắt BC ở D, cắt đường tròn ở E. Cm
a, MA=MD
b, AD.AE=AC.AB
Từ điểm M ở ngoài đường tròn (O) vẽ hai tiếp tuyến MA, MB và một cát tuyến MDE với đường tròn (tâm O nằm ngoài góc AME). a) Chứng minh tứ giác MAOB nội tiếp, xác định tâm và bán kính đường tròn này. b) Vẽ đường kính AK của đường tròn (O). Chứng minh BK // OM. c) DK cắt OM tại I. Chứng minh Tứ giác MDIB nội tiếp.
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp đường tròn đường kính MO
Tâm là trung điểm của MO
Bán kính là MO/2
b: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB
góc ABK=1/2*sđ cung AK=90 độ
=>AB vuông góc BK
=>BK//OM
Từ một điểm M ở bên ngoài đường tròn (O;6cm) kẻ hai tiếp tuyến MN, MP với đường tròn (N;P€(O)) và cát tuyến MAB của (O) sao cho AB=6cm
Cho đường tròn (O). Từ điểm A bên ngoài đường tròn vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Đường thẳng kẻ qua C song song với AB cắt đường tròn (O) ở D, AD cắt đường tròn (O) ở M, CM cắt AB ở N. Chứng minh: a) Góc BAD = Góc ACN b) AN2 = NM.NC; c) N là trung điểm của AB.
ai đó làm dùng cái tôi cũng đang cần bài này :((