Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Chí Cường
Xem chi tiết
Vô Danh
Xem chi tiết
Nguyễn Linh Chi
26 tháng 4 2020 lúc 22:40

Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\) ; \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)

\(P=\left(x^2+\frac{1}{y^2}\right)+\left(y^2+\frac{1}{x^2}\right)\)

\(=\left(x^2+y^2\right)+\frac{x^2+y^2}{x^2y^2}\ge\frac{1}{2}+\frac{\frac{1}{2}}{\frac{1}{4^2}}=\frac{17}{2}\)

Dấu "=" xảy ra <=> x = y =1/2

Khách vãng lai đã xóa
Tran Le Khanh Linh
26 tháng 4 2020 lúc 23:18

Em không chắc em làm đúng không nhưng ra kết quả khác cô Chi. Sai thì cô bỏ qua cho em ạ

\(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=\left(xy+\frac{1}{xy}\right)^2\). Dễ thấy \(0< xy\le\left(\frac{x+y}{2}\right)^2=\frac{1}{4}\)

Xét hàm số \(f\left(t\right)=t+\frac{t}{t}\)trên \((0;\frac{1}{4}]\). Lấy t1<t2 \(\in(0;\frac{1}{4}]\)

Xét \(f\left(t_1\right)-f\left(t_2\right)=\left(t_1-t_2\right)\left(1-\frac{1}{t_1t_2}\right)\)Vì \(t_1;t_2\in(0;\frac{1}{4}]\Rightarrow1< \frac{1}{t_1t_2}\)

Từ đó dễ ràng nhận ra: \(f\left(t_1\right)-f\left(t_2\right)>0\)Vậy \(f\left(t\right)\)nghịch biến trên \((0;\frac{1}{4}]\)

Do đó mà \(f\left(\frac{1}{4}\right)\le f\left(t\right)\forall t\in(0;\frac{1}{4}]\). Hay \(\frac{17}{4}\le f\left(t\right)\forall t\in(0;\frac{1}{4}]\)

=> \(\frac{17}{4}\le xy+\frac{1}{xy}\Rightarrow\frac{287}{16}\le\left(xy+\frac{1}{xy}\right)^2=P\)

Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
chử mai
Xem chi tiết
thien ty tfboys
7 tháng 12 2017 lúc 21:43

Ta có: P = \(P=\left(1+\frac{1}{x}\right)\left(1-\frac{1}{y}\right).\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\) (HĐT số 3)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(x-1\right)\left(y-1\right)}{xy}\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{-x.-y}{xy}\)

= (1 + 1/x)(1 + 1/y) 
= 1 + 1/(xy) + (1/x + 1/y) = 1 + 1/(xy) + (x + y)/xy 
= 1 + 1/(xy) + 1/(xy) = 1 + 2/(xy) 
Áp dụng bđt: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
 \(\Rightarrow P\ge\frac{1+2}{\frac{1}{4}}=9\) 
Vậy PMin = 9 xảy ra \(\Leftrightarrow x=y=\) \(\frac{1}{2}\)

nguyen kim chi
Xem chi tiết

Áp dụng bđt AM-GM ta có

\(P\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2.\left(yz+1\right)^2.\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=A\)

  Ta có   \(A=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

Áp dụng bđt AM-GM ta có

\(A\ge3\sqrt[3]{8\sqrt{\frac{xyz}{xyz}}}=3.2=6\)

\(\Rightarrow P\ge6\)

Dấu "=" xảy ra khi x=y=z=\(\frac{1}{2}\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
18 tháng 2 2020 lúc 18:31

Làm tiếp bài ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ chớ hình như bị ngược dấu ó.Do mình gà nên chỉ biết cô si mù mịt thôi ạ

\(3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

\(=3\sqrt[3]{\left(y+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}\right)\left(z+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}\right)\left(x+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}\right)}\)

\(\ge3\sqrt[3]{5\sqrt[5]{\frac{y}{256x^4}}\cdot5\sqrt[5]{\frac{z}{256y^4}}\cdot5\sqrt[5]{\frac{x}{256z^4}}}\)

\(=3\sqrt[3]{125\sqrt[5]{\frac{xyz}{256^3\left(xyz\right)^4}}}\)

\(=15\sqrt[3]{\sqrt[5]{\frac{1}{256^3\left(xyz\right)^3}}}\)

\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\left(\frac{x+y+z}{3}\right)^9}}\)

\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\frac{1}{2^9}}}=\frac{15}{2}\)

Dấu "=" xảy ra tại \(x=y=z=\frac{1}{2}\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
18 tháng 2 2020 lúc 20:10

Không phải ngược đâu nha mọi người,dấu bằng không xảy ra nhé!

Khách vãng lai đã xóa
nguyen kim chi
Xem chi tiết
Phan Nghĩa
6 tháng 8 2020 lúc 16:43

Bài này thì AM-GM thôi 

\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)

Sử dụng BĐT AM-GM cho 3 số không âm ta có :

\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)^2}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}\)

\(=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}\)

\(=3\sqrt[3]{\left(\frac{xy}{x}+\frac{1}{x}\right)\left(\frac{yz}{y}+\frac{1}{y}\right)\left(\frac{zx}{z}+\frac{1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

Tiếp tục sử dụng AM-GM cho 2 số không âm ta được :

\(3\sqrt[3]{\left(2\sqrt[2]{y\frac{1}{x}}\right)\left(2\sqrt[2]{z\frac{1}{y}}\right)\left(2\sqrt[2]{x\frac{1}{z}}\right)}\ge3\sqrt[3]{\left(2\sqrt{\frac{y}{x}}\right)\left(2\sqrt{\frac{z}{y}}\right)\left(2\sqrt{\frac{x}{z}}\right)}\)

\(=3\sqrt[3]{8\left(\sqrt{\frac{y}{x}}.\sqrt{\frac{z}{y}}.\sqrt{\frac{x}{z}}\right)}=3\sqrt[3]{8.\sqrt{\frac{xyz}{xyz}}}=3\sqrt[3]{8}=3.2=6\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\)

Vậy \(Min_P=6\)đạt được khi \(x=y=z=\frac{1}{2}\)

Khách vãng lai đã xóa
Hoàng Thị Quỳnh Anh
Xem chi tiết
zZz Cool Kid_new zZz
10 tháng 5 2019 lúc 20:09

Chứng minh BĐT phụ:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Giờ thì chứng minh thôi:3

Áp dụng BĐT Cauchy-schwarz dạng engel ta có:

\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}\)

\(=8\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)

Vậy \(P_{min}=8\Leftrightarrow x=y=\frac{1}{2}\)

Nguyễn Linh Chi
26 tháng 5 2019 lúc 21:52

Bài này bạn làm đúng rồi nhưng mà bạn bị nhầm phép tính: \(\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}=18\)

=> Min P=18

Phạm Minh Phú
Xem chi tiết
Trần Thị Mĩ Duyên
27 tháng 3 2020 lúc 8:26

Cho mình hỏi bài này sử dụng bđt cauchy trực tiếp luôn có được không?

Khách vãng lai đã xóa
Nguyễn Thiều Công Thành
Xem chi tiết
Lê Tuấn Nghĩa
Xem chi tiết
Đào Thu Hoà
26 tháng 5 2019 lúc 21:56

áp dụng bất đẳng thức Cauchy ta có :

\(\frac{\left(x-1\right)^2}{z}+\frac{z}{4}\ge2\sqrt{\frac{\left(x-1\right)^2}{z}\frac{z}{4}}=|x-1|=1-x.\)

\(\frac{\left(y-1\right)^2}{x}+\frac{x}{4}\ge2\sqrt{\frac{\left(y-1\right)^2}{x}\frac{x}{4}}=|y-1|=1-y.\)

\(\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge2\sqrt{\frac{\left(z-1\right)^2}{y}\frac{y}{4}}=|z-1|=1-z.\)

\(\Rightarrow\frac{\left(x-1\right)^2}{z}+\frac{z}{4}+\frac{\left(y-1\right)^2}{x}+\frac{x}{4}+\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge1-x+1-y+1-z.\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge3-\left(x+y+z\right)-\frac{x+y+z}{4}=3-2-\frac{2}{4}=\frac{1}{2}.\)

Vậy GTNN của \(A=\frac{1}{2}\Leftrightarrow x=y=z=\frac{2}{3}.\)

Hoàng Long
26 tháng 5 2019 lúc 21:52

1. Cho 3 số thực x,y,z thỏa mãn x+y+z=xyz và x,y,z>1

Tìm GTNN của P= x-1/y+y-1/x+ x-1/x2

               Giải

Từ gt⇒1xy+1yz+1zx=1⇒1xy+1yz+1zx=1

Theo AM-GM ta có:

P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥√3∑1xy+∑1xy−2=√3−1P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥3∑1xy+∑1xy−2=3−1

Dấu = xảy ra⇔x=y=z=1√3

P/S: ĐỀ BÀI TƯƠNG TỰ NÊN BẠN TỰ LÀM NHA !! CHÚC HOK TỐT!

Đào Thu Hoà
26 tháng 5 2019 lúc 22:03

Hoặc sử dụng bất đẳng thức Cauchy-Schwarz thì ngắn hơn nhiều 

\(\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge\frac{\left(x-1+y-1+z-1\right)^2}{z+x+y}=\frac{\left(x+y+z-3\right)^2}{x+y+z}=\frac{1}{2}..\)