cho hình bình hành abcd lấy m thuộc ab,n thuộc cdsao cho am=cn.
a)an=cm,an//cm
b)ac,bd và mn đồng quy
Cho hình bình hành ABCD, trên AC lấy 2 điểm M, N sao cho AM = CN.
a, Cm DM =BN, BM // DN
b, Cm MN, AC, BD đồng quy
a: Xét ΔDAM và ΔBCN có
AD=BC
\(\widehat{DAM}=\widehat{BCN}\)
AM=CN
Do đó: ΔDAM=ΔBCN
Suy ra: DM=BN
Cho hình bình hành ABCD. M thuộc AB, N thuộc CD sao cho AM=CN. AC cắt BD tại O. MD cắt AN tại E. MC cắt BN tại F. CMR:
a) AN=CM; AN song song CM
b) AC, BD, MN đồng quy
c) ME=NF và E, O, F thẳng hàng
B1 a) Xét ∆AHD và ∆CKB có: + góc AHD = góc CKB = 90độ
+ AD = BC
+ góc ADH = góc CBK(so le trong) => ∆AHD = ∆CKB(c.g.c) => AH = CK
Xét tứ giác AHCK có AH // CK(cùng ⊥ BD) và AH = CK => AHCK là hbh.
b) Do AHCK là hình bình hành => AK // CH => AM // CN, do ABCD là hình bình hành => AD // BC => AN // BM. Xét tứ giác AMCN có AM // CH và AN // BM => AMCN là hình bình hành => AN = CM.
c) Nối A -> C,M -> N do O là trung điểm HK => O là trung điểm AC => O là trung điểm MN => O;M;N thẳng hàng (do 2 đường chéo của hbh cắt nhau tại trung điểm mỗi đường)
B2:
B3: đề sai.
B4: Kẻ EI // AB(I thuộc BC) Nối I -> F; I -> K; F -> C. => ta chứng minh được ADCI là hbh (bạn tự chứng minh) Dựa theo tính chất đối xứng ta chứng minh được: ∆FIC = ∆KIC, ∆FIC có FC = IC ( = DE) và góc C = 60độ => ∆FIC đều => ∆KIC đều => góc CIK = 60độ. Do ADCI là hbh => góc AIC = góc D = 120 độ => góc CIK + góc AIC = 60độ + 120 độ = 180độ => A;I;K thẳng hàng, mà AI // AB (cách kẻ) => AK // AB(đpcm)
Bài 5:cho hình bình hành ABCD, e thuộc AB sao cho AE= CF. Lấy M thuộc BC, N thuộc AD sao cho CM=AN
a, Chứng minh: MENF là hình bình hành
b, Chứng minh: AC,BD,MN,EF đồng quy
Ta có: BE+AE=BA
DF+FC=DC
mà BA=DC
và AE=FC
nên BE=DF
Ta có: AN+ND=AD
CM+MB=CB
mà AD=CB
và AN=CM
nên ND=MB
Xét ΔANE và ΔCMF có
AN=CM
\(\widehat{A}=\widehat{C}\)
AE=CF
Do đó: ΔANE=ΔCMF
Suy ra: NE=MF
Xét ΔEBM và ΔFDN có
EB=FD
\(\widehat{B}=\widehat{D}\)
BM=DN
Do đó: ΔEBM=ΔFDN
Suy ra: EM=FN
Xét tứ giác MENF có
ME=NF
NE=MF
Do đó: MENF là hình bình hành
Bài 5:cho hình bình hành ABCD, e thuộc AB sao cho AE= CF. Lấy M thuộc BC, N thuộc AD sao cho CM=AN
a, Chứng minh: MENF là hình bình hành
b, Chứng minh: AC,BD,MN,È đồng quy
a: Ta có: BE+AE=BA
DF+FC=DC
mà BA=DC
và AE=FC
nên BE=DF
Ta có: AN+ND=AD
CM+MB=CB
mà AD=CB
và AN=CM
nên ND=MB
Xét ΔANE và ΔCMF có
AN=CM
\(\widehat{A}=\widehat{C}\)
AE=CF
Do đó: ΔANE=ΔCMF
Suy ra: NE=MF
Xét ΔEBM và ΔFDN có
EB=FD
\(\widehat{B}=\widehat{D}\)
BM=DN
Do đó: ΔEBM=ΔFDN
Suy ra: EM=FN
Xét tứ giác MENF có
ME=NF
NE=MF
Do đó: MENF là hình bình hành
Bài 5:cho hình bình hành ABCD, e thuộc AB ; f thuộc BC sao cho AE= CF. Lấy M thuộc BC, N thuộc AD sao cho CM=AN
a, Chứng minh: MENF là hình bình hành
b, Chứng minh: AC,BD,MN,EF đồng quy
a: Ta có: BE+AE=BA
DF+FC=DC
mà BA=DC
và AE=FC
nên BE=DF
Ta có: AN+ND=AD
CM+MB=CB
mà AD=CB
và AN=CM
nên ND=MB
Xét ΔANE và ΔCMF có
AN=CM
\(\widehat{A}=\widehat{C}\)
AE=CF
Do đó: ΔANE=ΔCMF
Suy ra: NE=MF
Xét ΔEBM và ΔFDN có
EB=FD
\(\widehat{B}=\widehat{D}\)
BM=DN
Do đó: ΔEBM=ΔFDN
Suy ra: EM=FN
Xét tứ giác MENF có
ME=NF
NE=MF
Do đó: MENF là hình bình hành
Cho hình bình hành ABCD. Lấy E,F thuộc BD lấy điểm E và F sao cho DE= BF. a) CM AECF là hình bình hành
b) Gọi M, N lần lượt là giao điểm của AE, CF với DC và AB. Chứng tỏ AC, BD, MN đồng quy.
Cho hình bình hành ABCD. Lấy hai điểm E,D theo thứ thự thuộc AB và CD sao cho AE=CF. Lấy 2đ M,N thứ tự thuộc BC VÀ ADSAP CHO CM=AN.CMR
a, MENF là hình bình hành
b,các đường thẳng AC,BD,MN,EF ĐỒNG QUY
Cho hình bình hành ABCD. Lấy E,F thuộc BD lấy điểm E và F sao cho DE= BF.
a) CM AE//CF
b) Gọi M, N lần lượt là giao điểm của AE, CF với DC và AB. Chứng tỏ AC, BD, MN đồng quy.
Bài 5: Cho hình bình hành ABCD, E thuộc AB sao cho AE=CF.Lấy M thuộc BC,N thuộc AD sao cho CM=AN
a, chứng minh: MENF là hình bình hành
b, chứng minh: AC,BD,MN,EF đồng quy