cho tam giac ABC co goc A =90o duong cao AH goi O;E theo thu tu la chan duong vuong goc ke tu A
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\)
=>HB*HC=4^2=16
mà HB+HC=10cm
nên HB,HC là hai nghiệm của phương trình:
\(x^2-10x+16=0\)
=>(x-8)(x-2)=0
=>\(\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Do đó, chúng ta sẽ có 2 trường hợp là \(\left[{}\begin{matrix}BH=8cm;CH=2cm\\BH=2cm;CH=8cm\end{matrix}\right.\)
cho tam giac abc duong cao ah . goi m là trung điểm cua bc, biet ah, am chia goc o dinh a thanh 3 goc bang nhau. tinh các goc cua tam giac abc
CHO TAM GIAC ABC VUONG TAI A ,CO AB=12,AC=16 .KE DUONG CAO AH
A,CUNG MINH TAM GIAC HAB DONG DANG VOI TAM GIAC ABC
B, TINH DO DAI DOAN THANG BC,AH
C,GOI AD LA DUONG PHAN GIAC CUA BAC ,DE LA DUONG PHAN GIAC CUA ADB.DUONG THNAG VUONG GOC VOI DE TAI D ,CAT ACANH AC O F.CHUNG MINH EA/EB*DB/DC*FC/FA=1
a) Xét tam giác HBA và tam giác ABC có
góc H = góc A (=90 độ)
góc ABC chung
suy ra tam giác HBA đồng dạng với tam giác ABC
b) Áp dụng định lyd Pi ta go vào tam giác vuông ABC có
BC^2= AB^2+AC^2
BC^2=12^2+16^2
BC^2 = 400
BC=căn 400 = 20 cm
+ Ta có tam HBA đồng dạng vs tam giác ABC (cmt)
suy ra HA/AC=BA/BC(t/c 2 tam giác đồng dạng)
suy ra HA/16=12/20
SUY RA HA=(16*12)/20 =9,6cm
c) ta có DE là tia phân giac
suy ra AE/EB=AD/BD 1
VÌ DF là tia p/g
suy ra FC/FADC/AD 2
TỪ 1,2 suy ra EA/EB *DB/DC*EC/FA
suy ra EA/EB*DB/DC*FC/FA =1(đfcm)
Cho tam giac ABC co AB=2 cm, AC= 4 cm. Qua B ke duong thang cat AC tai D sao cho goc ABD bang goc ACB. Goi AH,AE lan luot la duong cao tam giac ABC, ABD. Chung minh S ABH = 4 S ADE
cho tam giac ABC co 3 goc nhon(AB<AC). Cac duong cao AD,BE,CF cua tam giac cat nhau tai H. Goi I la trung diem cua AH. a)Chung minh:BCEF va CDHE la tu giac noi tiep. b)Chung minh:EB la phan giac cua goc FED va Tam giacBEF dong dang voi tam giacDHE. c)Goi O la tam duong tron ngoai tiep tu giac BCEF. Chung minh:IE la tiep tuyen cua duong tron (O). d)Ve CI cat (O) tai M (M khac C), EF cat AD tai K. Chung minh 3 diem B,K,M thang hang
...giai ho cau c,d
a: Xét tư giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
Xét tứ giác CDHE có
góc CDH+góc CEH=180 độ
=>CDHE là tứ giác nội tiếp
b: CDHE là tứ giác nội tiếp
=>gó BED=góc FCB
góc FEH=góc BAD
mà góc FCB=góc BAD
nên góc BED=góc FEB
=>EB là phân giác của góc FED
c: góc IEO=góc IEH+góc OEH
=góc IHE+góc OBE
=góc BHD+góc CBH=90 độ
=>IE là tiếp tuyến của (O)
Cho tam giac ABC vuonA , co AH la duog tai ng cao (H thuoc BC) va AM la tia phan giac cua goc HAC (M thuoc BC) . Ke MK vuong goc voi AC tai K . a,Chung minh rang AH = AK,BA = BM. b,Goi I la giao diem cua duong thang MK va duong thang AH . Chung minh rang AM vuong goc CI va KH song song C
a, Xét \(\Delta AHM\) và \(\Delta AKM\) có:
\(\widehat{AHM}=\widehat{AKM}=90^o\)
AM cạnh chung
\(\widehat{HAM}=\widehat{KAM}\) (vì AM là tia phân giác của \(\widehat{HAK}\))
\(\Rightarrow\Delta AHM=\Delta AKM\) (cạnh huyền - góc nhọn)
`=> AH = AK` (2 cạnh tương ứng) (1)
Ta có: \(\widehat{AMK}+\widehat{KAM}=90^o\) (vì \(\Delta AKM\) vuông tại K)
\(\widehat{KAM}+\widehat{BAM}=90^o\)
\(\Rightarrow\widehat{AMK}=\widehat{BAM}\)
Mà \(\widehat{AMK}=\widehat{AMB}\) (vì \(\Delta AHM=\Delta AKM\))
\(\Rightarrow\widehat{BAM}=\widehat{AMB}\)
\(\Rightarrow\Delta ABM\) cân tại B \(\Rightarrow AB=BM\) (2)
Từ (1), (2) ta có đpcm
b, Xét \(\Delta HIM\) và \(\Delta CKM\) có:
\(\widehat{HMI}=\widehat{CMK}\) (2 góc đối đỉnh)
HM = KM (vì \(\Delta AHM=\Delta AKM\))
\(\widehat{IHM}=\widehat{CKM}\left(=90^o\right)\)
\(\Rightarrow\Delta HIM=\Delta KCM\left(g.c.g\right)\)
`=> HI = CK` (2 cạnh tương ứng)
Mà AH = AK (cmt)
`=> AH + HI = AK + CK`
`=> AI = AC`
\(\Rightarrow\Delta ACI\) cân tại A
AM là đường phân giác của \(\Delta ACI\) cân tại A
`=> AM` cũng là đường cao
\(\Rightarrow AM\perp CI\) (3)
Vì AH = AK nên \(\Delta AHK\) cân tại A
\(\Rightarrow\widehat{AHK}=\dfrac{180^o-\widehat{CAI}}{2}\)
\(\Delta ACI\) cân tại A \(\Rightarrow\widehat{AIC}=\dfrac{180^o-\widehat{CAI}}{2}\)
\(\Rightarrow\widehat{AHK}=\widehat{AIC}\)
Mà 2 góc này ở vị trí đồng vị
`=>` HK // CI (4)
Từ (3), (4) ta có đpcm
cho tam giac ABC co goc B = 45 độ goc C bang 30 do duong cao AH M la diem tren AC sao cho AM = AH a, chung minh M la trung diem cua AC,
b, tinh so do goc AMB :
c, goi D la giao diem cua BM va phan giac goc ACB thi tam giac ABD la tam giac gi
1) Tam giac ABC co AB = \(\dfrac{\sqrt{6}-\sqrt{2}}{2}\), BC = \(\sqrt{3}\), CA = \(\sqrt{2}\) . Goi D la chan duong phan giac trong goc A. Khi do goc ADB bang bao nhieu do
A. 45o B.60o C.75o D. 90o
Lời giải:Áp dụng định lý cos ta có:
\(\cos A=\frac{AB^2+AC^2-BC^2}{2AB.AC}=\frac{-1}{2}\Rightarrow \widehat{A}=120^0\)
\(\cos B=\frac{BC^2+BA^2-AC^2}{2BC.BA}=\frac{-\sqrt{2}}{2}\Rightarrow \widehat{B}=45^0\)
\(\widehat{C}=180^0-(\widehat{A}+\widehat{B})=180^0-(120^0+45^0)=15^0\)
\(\widehat{ADB}=180^0-(\frac{\widehat{A}}{2}+\widehat{B})=180^0-(\frac{120^0}{2}+45^0)=75^0\)