Cho đa thức \(P(x) ={x^2} - 3x + 2\). Hãy tính giá trị của P(x) khi \(x = 1, x = 2, x = 3.\)
cho 2 đa thức
P(x)=3x mũ 3 + x mũ 2 + 5x+5
Q(x)=-3x mũ 3 -x mũ 2-3
a) Tính P(x) + Q(x) và P(x)-Q(x)
b) tính giá trị của P(x) - Q(x) khi x=-1
c) tìm nghiệm của đa thức P(x) + Q(x)
`a)`
`@P(x)+Q(x)=3x^3+x^2+5x+5-3x^3-x^2-3`
`=5x+2`
`@P(x)-Q(x)=3x^3+x^2+5x+5+3x^3+x^2+3`
`=6x^3+2x^2+5x+8`
_________________________________________
`b)` Thay `x=-1` vào `P(x)-Q(x)` có:
`6.(-1)^3+2.(-1)^2+5.(-1)+8`
`=6.(-1)+2.1-5+8`
`=-6+2-5+8=-1`
_______________________________________________
`c)` Cho `P(x)+Q(x)=0`
`=>5x+2=0`
`=>5x=-2`
`=>x=-2/5`
Vậy nghiệm của đa thức `P(x)+Q(x)` là `x=-2/5`
TỰ LUẬN (7 điểm)
Câu 1. (2,0 điểm) Cho đa thức A = (x+2)(x²-2x+4)+x(1-x)
a) Rút gọn đa thức A?
b) Tính giá trị đa thức A khi x = -4
c) Tìm giá trị của x để A = -2
Câu 2. (1,5 điểm) Phân tích các đa thức sau thành nhân tử:
a) x³-3x²
b) 5x310x2 + 5x
Câu 3. (3,0 điểm). Cho tam giác ABC vuông tại A. (AB < AC), đường cao AH. Từ H kẻ HẸ và HF lần lượt vuông góc với AB và AC. (E AB, Fe AC).
a) Chứng minh rằng: AH = EF?.
b) Trên FC lấy điểm K sao cho FK = AF. Chứng minh rằng tứ giác EHKF là hình bình hành?
c) Gọi O là giao điểm của AH và EF, 1 là giao điểm của HF và ẸK. Chứng minh: 1 OLIAC và OI = AK? 4
Câu 4. (0,5 điểm)
Tìm GTNN của biểu thức sau: A = 2x² + y²+2xy + 2x-2y+2028
Hết
Câu 1:
a: Sửa đề: \(A=\left(x+2\right)\left(x^2-2x+4\right)+x\left(1-x\right)\left(1+x\right)\)
\(=x^3+2^3+x\left(1-x^2\right)\)
\(=x^3+8+x-x^3\)
=x+8
b: Khi x=-4 thì A=-4+8=4
c: Đặt A=-2
=>x+8=-2
=>x=-10
Câu 2:
a: \(x^3-3x^2=x^2\cdot x-x^2\cdot3=x^2\left(x-3\right)\)
b: \(5x^3+10x^2+5x\)
\(=5x\cdot x^2+5x\cdot2x+5x\cdot1\)
\(=5x\left(x^2+2x+1\right)\)
\(=5x\left(x+1\right)^2\)
a) Hãy cho biết biểu thức nào sau đây là đơn thức một biến:-2m^2+m;-1/5x+3y;x b) Tìm bậc của đa thức:A(x)=-x^2+2/3x-1 c) Tính giá trị của đa thức:B(x)=x^2+4x-5Khi x =-3
a: x là đơn thức một biến
b: A(x)=-x^2+2/3x-1
Đặt A(x)=0
=>-x^2+2/3x-1=0
=>x^2-2/3x+1=0
=>x^2-2/3x+1/9+8/9=0
=>(x-1/3)^2+8/9=0(vô lý)
c: B(-3)=(-3)^2+4*(-3)-5
=9-5-12
=4-12=-8
1. Tính giá trị của đa thức F(x) = 2x2 – 3x – 2 tại x = -1; x = 0 ; x = 1; x = 2. Từ đó hãy tìm một nghiệm của đa thức F(x)
2. Tìm nghiệm của đa thức E(x) = x2 + x.
1. F(-1) = 2.(-1)2 – 3. (-1) – 2 = 2.1 + 3 – 2 = 3
F(0) = 2. 02 – 3 . 0 – 2 = -2
F(1) = 2.12 – 3.1 – 2 = 2 – 3 – 2 = -3
F(2) = 2.22 – 3.2 – 2 = 8 – 6 – 2 = 0
Vì F(2) = 0 nên 0 là 1 nghiệm của đa thức F(x)
2. Vì đa thức E(x) có hệ số tự do bằng 0 nên có một nghiệm là x = 0.
Bài 1 Cho hai đa thức :
A(x)=\(2x^3+2-3x^2+1\)
B(x)=\(2x^2+3x^3-x-6\)
a)Xác định bậc của đa thức A(x) và B(x)
b) Tính giá trị của đa thức A(x) tại x =2
c) Tính A(x)+B(x); A(x)-B(x)
a) \(A\left(x\right)=2x^3+2-3x^2+1=2x^3-3x^2+3\)
Có bậc là 3
\(B\left(x\right)=2x^2+3x^3-x-6=3x^3+2x^2-x-6\)
Có bậc 3
b) Thay \(x=2\) vào A(x) ta được:
\(2\cdot2^3-3\cdot2^2+3=2\cdot8-3\cdot4+3=16-12+3=7\)
Vậy giá trị của A(x) tại x=2 là 7
c) \(A\left(x\right)+B\left(x\right)\)
\(=2x^3-3x^2+3+3x^3+2x^2-x-6\)
\(=5x^3-x^2-x-3\)
\(A\left(x\right)-B\left(x\right)\)
\(=\left(2x^3-3x^2+3\right)-\left(2x^2+3x^3-x-6\right)\)
\(=2x^3-3x^2+3-2x^2-3x^3+x+6\)
\(=-x^3-5x^2+x+9\)
a: A(x)=2x^3-3x^2+3
Bậc là 3
B(x)=3x^3+2x^2-x-6
Bậc là 3
b: A(2)=2*2^3-3*2^2+3=7
c; A(x)+B(x)
=2x^3-3x^2+3+3x^3+2x^2-x-6
=5x^3-x^2-x-3
A(x)-B(x)
=2x^3-3x^2+3-3x^3-2x^2+x+6
=-x^3-5x^2+x+9
`@` `\text {Ans}`
`\downarrow`
`1,`
`a)`
`A(x)=2x^3 +2 - 3x^2 + 1`
Bậc của đa thức: `3`
`B(x) = 2x^2 + 3x^3 - x - 6`
Bậc của đa thức: `3`
`b)`
Thay `x=2` vào đa thức `A(x)`
`2*2^3 +2 - 3*2^2 + 1`
`= 2^4 + 2 - 12 + 1`
`= 16 + 2 - 12 + 1`
`= 16 - 10 + 1`
`= 6 + 1`
`= 7`
Vậy, giá trị của `A(x)` tại `x=2` là `A(2)=7`
`c)`
`A(x)+B(x)`
`= (2x^3 +2 - 3x^2 + 1)+(2x^2 + 3x^3 - x - 6)`
`= 2x^3 +2 - 3x^2 + 1+2x^2 + 3x^3 - x - 6`
`= (2x^3 + 3x^3) + (-3x^2 + 2x^2) - x + (2+1-6)`
`= 5x^3 - x^2 - x - 3`
`A(x) - B(x)`
`=(2x^3 +2 - 3x^2 + 1)-(2x^2 + 3x^3 - x - 6)`
`= 2x^3 +2 - 3x^2 + 1-2x^2 - 3x^3 + x + 6`
`= (2x^3 - 3x^3) + (-3x^2 - 2x^2) + x + (2 + 1 + 6)`
`= -x^3 - 5x^2 + x + 9`
Cho đa thức P=3x^2 +5
(1)tìm giá trị của đa thức P khi x=-1;x=0;x=3
(2)Chứng tỏ rằng đã thức P luôn dương với mọi giá trị của x ??????????????????????
Giup mik nha mấy bạn ;-;
\(\left(1\right)\)Tại x=-1, ta có: \(P=3x^2+5=3\left(-1\right)^2+5=3+5=8\)
Tại x=0, ta có: \(P=3x^2+5=3.0^2+5=0+5=5\)
Tại x=3, ta có: \(P=3x^2+5=3.3^2+5=3.9+5=27+5=32\)
(2) Ta có: \(P=3x^2+5\)mà \(x^2\ge0\)với mọi x => 3x^2 \(\ge\)0 với mọi x
Lại có 5 dương => P \(\ge\)0 hay đa thức P luôn dương với mọi giá trị của x
Cho các đa thức P(x) = 2x^2 - 3x -4. Q(x) = x^2 - 3x + 5 a) Tính giá trị của đa thức P(x) tại x =1 b) Tìm H(x) =P(x) - Q(x) c)Tìm nghiệm của đa thức H(x)
a, \(P\left(1\right)=2-3-4=-5\)
b, \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2-9\)
c, Ta có \(H\left(x\right)=\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=3;x=-3\)
cho hai đa thức m(x)=3x^4-2x^3+5x^2-4x+1
n(x)=-3x^4+2x^3-3x^2+7x+5
a)tính p(x)=m(X)+n(x)
b)tính giá trị của p(x)tại x=-2
a, M(\(x\) )+N(\(x\)) = 3\(x^4\) - 2\(x\)3 + 5\(x^2\) - \(4x\)+ 1 + ( -3\(x^4\) + 2\(x^3\)- 3\(x^2\)+ 7\(x\) + 5)
M(\(x\)) + N(\(x\)) = ( 3\(x^4\)- 3\(x^4\))+( -2\(x^3\) + 2\(x^3\))+(5\(x^2\) - 3\(x^2\))+( 7\(x-4x\)) +(1+5)
M(\(x\)) + N(\(x\)) = 0 + 0 + 2\(x^2\) + 3\(x\) + 6
M(\(x\)) + N(\(x\)) = 2\(x^2\) + 3\(x\) + 6
b, P(\(x\)) = M(\(x\)) + N(\(x\)) = 2\(x^2\) + 3\(x\) + 6
P(-2) = 2.(-2)2 + 3.(-2) + 6 = 8 - 6 + 6 = 8
Cho đa thức P(x) = 3x^3 + 4x^2 - 8x +1
a) CMR: nghiệm của đa thức P là x = 1
b) Tính giá trị của đa thức P biết x^2 + x -3 = 0