Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
satoshi-gekkouga
Xem chi tiết
satoshi-gekkouga
29 tháng 6 2021 lúc 17:14

Ai giúp đi, làm ơnnnnnnnnnnnnnnnnnnn

Khách vãng lai đã xóa
Nguyễn Đức Chung
29 tháng 6 2021 lúc 17:19

\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)

\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)

Khách vãng lai đã xóa
dê gia
20 tháng 8 lúc 8:41

con khỉ tao đéo b

 

kiwi nguyễn
Xem chi tiết
svtkvtm
26 tháng 6 2019 lúc 8:35

\(\frac{1}{1.2}+\frac{1}{3.4}+......+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-....+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{50}\right)=\left(1+\frac{1}{2}+.....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=\left(1+\frac{1}{2}+....+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\left(đpcm\right)\)

\(theocaua\Rightarrow A=\frac{1}{26}+\frac{1}{27}+......+\frac{1}{50}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\left(5sohang\right)+\frac{1}{40}+\frac{1}{40}+....+\frac{1}{40}\left(10sohang\right)+\frac{1}{50}+\frac{1}{50}+....+\frac{1}{50}\left(10sohang\right)=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}>\frac{35}{60}=\frac{7}{12}\left(1\right)\)

\(A=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}< \frac{1}{25}+\frac{1}{25}+...+\frac{1}{25}\left(5sohang\right)+\frac{1}{30}+\frac{1}{30}+....+\frac{1}{30}\left(10sohang\right)+\frac{1}{40}+\frac{1}{40}+.....+\frac{1}{40}\left(10sohang\right)=\frac{1}{4}+\frac{1}{3}+\frac{1}{5}=\frac{47}{60}< \frac{5}{6}=\frac{50}{60}\left(2\right)\) \(\left(1\right);\left(2\right)\Rightarrow\frac{7}{12}< A< \frac{5}{6}\)

Nguyen Thi Mai
Xem chi tiết
Nguyễn Hữu Thế
17 tháng 8 2016 lúc 16:26

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+............+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A=1-\frac{1}{100}\)

\(\Rightarrow A=\frac{99}{100}\)

Vì \(\frac{7}{12}< \frac{99}{100}< \frac{5}{6}\Rightarrow\frac{7}{12}< A< \frac{5}{6}\)               ĐPCM

( Bài này ko ai lm thì t lm cho haha)

Bùi Anh Thịnh
Xem chi tiết
ruby little angel
15 tháng 9 2015 lúc 16:23

mk bít lm cách lớp 5, vừa học

Cần ko bn

nguyenthuylinh
Xem chi tiết
VRCT_Ran Love Shinichi
18 tháng 9 2016 lúc 8:58

A = 1 / (1.2) + 1 / (3.4) + ... + 1 / (99.100) > 1 / (1.2) + 1 / (3.4) = 1 / 2 + 1 / 12 = 7 / 12 (1)
A = 1 / (1.2) + 1 / (3.4) + ... + 1 / (99.100) = (1 - 1 / 2) + (1 / 3 - 1 / 4) + ... + (1 / 99 - 100) = (1 - 1 / 2 + 1 / 3) - (1 / 4 - 1 / 5) - (1 / 6 - 1 / 7) - ... - (1 / 98 - 1 / 99) - 1 / 100 < 1 - 1 / 2 + 1 / 3 = 5 / 6                (2) 
(1), (2)  => 7 / 12 < A < 5 / 6

Nguyễn Huyền Phương
18 tháng 9 2016 lúc 9:02

uikuhikjhkhjjkhjkh

Đặng Quốc Huy
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết
Vũ Minh Tuấn
29 tháng 12 2019 lúc 12:33

+) \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(A=\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+...+\frac{1}{9900}\)

\(A=\left(\frac{1}{2}+\frac{1}{12}\right)+\left(\frac{1}{30}+...+\frac{1}{9900}\right)>\frac{1}{2}+\frac{1}{12}.\)

\(\Rightarrow A>\frac{1}{2}+\frac{1}{12}\)

\(\Rightarrow A>\frac{7}{12}\left(1\right).\)

+) \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\left(1-\frac{1}{2}+\frac{1}{3}\right)-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{5}{6}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}< \frac{5}{6}\)

\(\Rightarrow A< \frac{5}{6}\left(2\right).\)

Từ \(\left(1\right)và\left(2\right)\Rightarrow\frac{7}{12}< A< \frac{5}{6}\left(đpcm\right).\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
Alex Queeny
Xem chi tiết
Trần Thị Loan
7 tháng 9 2015 lúc 9:24

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

+) \(A=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+...+\frac{1}{100}\right)>\left(\frac{1}{75}+...+\frac{1}{75}\right)+\left(\frac{1}{100}+...+\frac{1}{100}\right)\)

=> \(A>\frac{25}{75}+\frac{25}{100}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

+) \(A=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+...+\frac{1}{100}\right)

Nguyễn Thùy Dương
Xem chi tiết
Phương Anh (NTMH)
17 tháng 8 2016 lúc 21:37

đề nay mk thấy kì kì sao á bn