Tìm x,y nguyên dương thỏa mãn
\(x^2+2x-4y^4+4y=3\)
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
Tìm các cặp số (x,y) nguyên dương thỏa mãn phương trình sau:x^2-y^2+2x-4y-10=0
\(x^2-y^2+2x-4y-10=0\)
\(\Rightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)
\(\Rightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Rightarrow\left(x+1+y+2\right)\left(x+1-y-2\right)=4\)
\(\Rightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)
Vì \(x,y\) nguyên dương nên \(x+y+3>x-y-1>0\)
\(\Rightarrow\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}\)
Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn: \(^{x^2+2y^2-3xy+2x-4y+3=0}\)
Tìm nghiệm nguyên dương thỏa mãn: \(4y^2=2+\sqrt{199-x^2-2x}\)
Ta có \(VT=2+\sqrt{200-\left(x^2+2x+1\right)}=2+\sqrt{200-\left(x+1\right)^2}\)
Để VT xác định thì \(\left(x+1\right)^2\le200\left(1\right)\)
Mà \(VP⋮2\) nên \(\sqrt{200-\left(x+1\right)^2}⋮2\Leftrightarrow200-\left(x+1\right)^2⋮4\)
Mà \(200⋮4\) nên \(\left(x+1\right)^2⋮4\left(2\right)\)
Mà \(\left(x+1\right)^2\) là số chính phương \(\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left(x+1\right)^2\in\left(0;4\right)\Leftrightarrow x+1\in\left\{-2;0;2\right\}\Leftrightarrow x\in\left\{-3;-1;1\right\}\)
Từ đó tính y nha
Không biết là đúng không nữa cơ.
Ta có: \(4y^2=2+\sqrt{199-x^2-2x}=2+\sqrt{200-\left(x+1\right)^2}\le2+\sqrt{200}\)
\(\Rightarrow y^2\le\dfrac{1+5\sqrt{2}}{2}\Leftrightarrow-\sqrt{\dfrac{1+5\sqrt{2}}{2}}\le y\le\sqrt{\dfrac{1+5\sqrt{2}}{2}}\)
Mà y là số nguyên dương \(\Rightarrow1\le y\le2\Rightarrow y\in\left\{1;2\right\}\)
Tìm được y rồi thì tìm x nha.
Tìm các số nguyên \(x,y\) thỏa mãn: \(x^2+8y^2+4xy-2x-4y=4\)
Đặt x = -2y + k (k \(\inℤ\))
Ta có x2 + 8y2 + 4xy - 2x - 4y = 4
<=> (-2y + k)2 + 8y2 + 4y(-2y + k) - 2(-2y + k) - 4y = 4
<=> k2 + 4y2 - 2k = 4
<=> (k - 1)2 + (2y)2 = 5 (*)
Dễ thấy (2y)2 \(⋮4\) (**)
Với y,k \(\inℤ\) kết hợp (*) ; (**) ta được
\(\left\{{}\begin{matrix}\left(k-1\right)^2=1\\\left(2y\right)^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}k=0\\k=2\end{matrix}\right.\\y=\pm1\end{matrix}\right.\)
Vậy (k,y) = (0;1) ; (0;-1) ; (2;1) ; (2;-1)
mà x = k - 2y nên các cặp (x;y) thỏa là (-2;1) ; (2;-1) ; (0;1) ; (4;-1)
Tìm các cặp số nguyên x, y thỏa mãn: \(x^2+8y^2+4xy-2x-4y=4\)
\(\Leftrightarrow x^2+4y^2+4xy-2\left(x+2y\right)+1=5-4y^2\)
\(\Leftrightarrow\left(x+2y+1\right)^2=5-4y^2\)
TH1 : \(4y^2=0\)
Pt \(\Leftrightarrow\left(x+2y+1\right)^2=5\)Mà 5 không là số chính phương.
=> Không có số nguyên x nào thỏa mãn.
TH2 : \(4y^2>0\)
Do \(\left(x+2y+1\right)^2\ge0\Rightarrow5\ge4y^2\)
Mà y nguyên
=> \(4y^{2}=4\)
=> y ∈ {1 ; -1}
Với y = 1
=> x + 3 = 1
=> x = -2 (tm)Với y = -1
=> x - 1 = 1
=> x = 2 (tm)Vậy..
C).(0,5 diem) 5 các số nguyên dương x, y, z thỏa tìm tất cả các số nguyên dương thỏa manc mãn: (2z - 4x)/3 = (3x - 2y)/4 = (4y - 3z)/2 và 200 < y ^ 2 + z ^ 2 < 450
Tìm x, y là số nguyên dương thoả mãn:
\(x^2+2x-4y^2+4y=3\)
Tìm \(x,y\) nguyên dương thõa mãn: \(x^2-y^2+2x-4y-10=0\)
Có : x2 - y2 + 2x - 4y - 10 = 0
<=> (x + 1)2 - (y + 2)2 = 7
<=> (x + y + 3)(x - y - 1) = 7
Lập bảng ta được
x + y + 3 | 7 | 1 | -1 | -7 |
x - y - 1 | 1 | 7 | -7 | -1 |
x | 3 | 3 | -5 | -5 |
y | 1 | -5 | 1 | -5 |
Vì x,y \(\inℕ^∗\) nên (x;y) = (3;1) là giá trị thỏa mãn