Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Bảo Linh
Xem chi tiết
Nghiêm Yến Nhi
Xem chi tiết
Stephen Hawking
2 tháng 1 2019 lúc 19:10

Ta có: \(5+5^2+5^3+....+5^{12}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+.......+\left(5^{11}+5^{12}\right)\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+........+5^{10}\left(5+5^2\right)\)

\(=\left(5+5^2\right).\left(1+5^2+.......+5^{10}\right)\)

\(=30.\left(1+5^2+......+5^{10}\right)⋮30\)(1)

Ta lại có: \(5+5^2+5^3+......+5^{12}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+.......+\left(5^{10}+5^{11}+5^{12}\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+........+5^{10}\left(1+5+5^2\right)\)

\(=5.31+5^4.31+......+5^{10}.31\)

\(=31\left(5+5^4+......+5^{10}\right)⋮31\)(2)

Từ (1) và (2) \(\Rightarrowđpcm\)

nguyen quang long
10 tháng 11 2019 lúc 20:20

lời giải là ngáo ngơ lơ tơ mơ

Khách vãng lai đã xóa
Đặng Minh Nguyệt
Xem chi tiết
Lê Đức Tuấn
Xem chi tiết
Lê Đức Tuấn
28 tháng 4 2016 lúc 20:25

quá dễ

Nhok Con CHibi
4 tháng 1 2017 lúc 19:40

C=(5+52)+(53+54)+.......+(511+512)

=30+52.(51+52)+.....+510.(51+52)

=30.1+52.30+.....+510.30

=30.(1+52+.........+510) chia hết cho 30

chắc là đúng ahihihi

Trần Thu Huyền
15 tháng 12 2023 lúc 19:01

chịu thoiiiii 

ta thi hai yến
Xem chi tiết
nguyenlengan
Xem chi tiết
Lê Hoài Duyên
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Nguyễn Hải Nam
10 tháng 12 2017 lúc 21:36

Thanks bạn

Đặng Thị Khánh Ly
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Khách vãng lai đã xóa
pham ngoc yen nhi
Xem chi tiết
Nguyễn Đăng Minh
9 tháng 10 2019 lúc 22:49

câu a nhóm 4 số lại(mũ liên tiếp)

câu b nhóm 4 số lại(mũ liên tiếp)

pham ngoc yen nhi
9 tháng 10 2019 lúc 22:52

bạn ơi, bạn có thể giải chi tiết đc ko!rồi mình cho.

pham ngoc yen nhi
11 tháng 10 2019 lúc 11:09

???????????????????????

Võ Thị Ánh Tuyết
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2023 lúc 20:19

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{79}+5^{80}\right)\)

\(=30+5^2\left(5+5^2\right)+...+5^{78}\left(5+5^2\right)\)

\(=30\left(1+5^2+...+5^{78}\right)⋮30\)

Lê Minh Hiền
Xem chi tiết
Đoàn Đức Hà
16 tháng 12 2020 lúc 11:43

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

Khách vãng lai đã xóa