Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Lan Phương
Xem chi tiết
Xyz OLM
16 tháng 7 2023 lúc 17:08

ĐKXĐ : \(x>0\)

Áp dụng bất đẳng thức Cauchy cho 2 số dương \(\sqrt{x};\dfrac{4}{\sqrt{x}}\) ta có 

\(P=\sqrt{x}+\dfrac{4}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{4}{\sqrt{x}}}=4\)

Dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{4}{\sqrt{x}}\Leftrightarrow x=4\)

Nguyễn Đức Trí
16 tháng 7 2023 lúc 13:33

\(P=\sqrt[]{x}+\dfrac{4}{\sqrt[]{x}}\left(x>0\right)\)

\(P=\dfrac{x+4}{\sqrt[]{x}}=\dfrac{x+4}{\sqrt[]{x}}\)

Vì \(x>0;x+4>4\)

\(\Rightarrow P=\dfrac{x+4}{\sqrt[]{x}}>4\)

⇒ Không có giá trị nhỏ nhất

Đinh Lan Phương
Xem chi tiết
Nguyễn Đức Trí
17 tháng 7 2023 lúc 10:12

\(P=\dfrac{x+5}{\sqrt[]{x}+2}=\dfrac{x-4+9}{\sqrt[]{x}+2}=\dfrac{\left(\sqrt[]{x}+2\right)\left(\sqrt[]{x}-2\right)+9}{\sqrt[]{x}+2}\)

\(=\left(\sqrt[]{x}-2\right)+\dfrac{9}{\sqrt[]{x}+2}=\left(\sqrt[]{x}+2\right)+\dfrac{9}{\sqrt[]{x}+2}-4\)

Áp dụng bất đẳng thức Cauchy cho 2 số \(\left(\sqrt[]{x}+2\right);\dfrac{9}{\sqrt[]{x}+2}\left(x\ge0\right)\)

\(\left(\sqrt[]{x}+2\right)+\dfrac{9}{\sqrt[]{x}+2}\ge2\sqrt[]{\left(\sqrt[]{x}+2\right).\dfrac{9}{\sqrt[]{x}+2}}=2.3=6\)

\(\Rightarrow P=\left(\sqrt[]{x}+2\right)+\dfrac{9}{\sqrt[]{x}+2}-4\ge6-4=2\)

\(\Rightarrow P\ge2\Rightarrow Min\left(P\right)=2\)

 

Nguyễn Đức Trí
17 tháng 7 2023 lúc 9:53

Bạn xem lại đề có phải \(P=x+\dfrac{5}{\sqrt[]{x}+2}\) không?

Đinh Lan Phương
17 tháng 7 2023 lúc 10:08

ko ạ là x+5/căn x +2 

 

Đinh Lan Phương
Xem chi tiết
Nguyễn Đức Trí
17 tháng 7 2023 lúc 16:08

\(P=\sqrt[]{x}+\dfrac{3}{\sqrt[]{x}-1}\left(x>1\right)\)

\(P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\)

Áp dụng bất đẳng thức Cauchy cho 2 số \(\sqrt[]{x}-1;\dfrac{3}{\sqrt[]{x}-1}\) ta được :

\(\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{\sqrt[]{x}-1.\dfrac{3}{\sqrt[]{x}-1}}\)

\(\Rightarrow\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{3}\)

\(\Rightarrow P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\ge2\sqrt[]{3}+1\)

\(\Rightarrow Min\left(P\right)=2\sqrt[]{3}+1\)

Đinh Lan Phương
17 tháng 7 2023 lúc 16:15

sorry mn cho e sửa lại đề ạ

tìm gtln của p ạ

 

Vũ Thị Kim Anh
Xem chi tiết
Nguyễn Bảo Long
28 tháng 2 2022 lúc 9:40

bon gà

 

Thủy Thu-
Xem chi tiết
Akai Haruma
4 tháng 5 2023 lúc 0:32

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

TFBOYS shuai tai
Xem chi tiết
Gia Bảo
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 9 2021 lúc 11:06

\(2,\\ a,\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(x\ge1\right)\\ \Leftrightarrow2\sqrt{x-1}+3\sqrt{x-1}-5\sqrt{x-1}=7\\ \Leftrightarrow0\sqrt{x-1}=7\Leftrightarrow x\in\varnothing\\ b,\sqrt{2x^2-3}=4\left(x\le-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\le x\right)\\ \Leftrightarrow2x^2-3=16\\ \Leftrightarrow x^2=\dfrac{19}{2}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)

Nguyễn Hoàng Minh
17 tháng 9 2021 lúc 11:02

\(1,\\ A=\sqrt{5+4x}+\sqrt{7-3x}\\ ĐKXĐ:\left\{{}\begin{matrix}5+4x\ge0\\7-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le\dfrac{7}{3}\end{matrix}\right.\)

 

Lấp La Lấp Lánh
17 tháng 9 2021 lúc 11:09

Bài 2:

a) \(\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(đk:x\ge1\right)\)

\(\Leftrightarrow2\sqrt{x-1}+3\sqrt{x-2}-5\sqrt{x-1}=7\)

\(\Leftrightarrow0=7\left(VLý\right)\)

Vậy \(S=\varnothing\)

b) \(\sqrt{2x^2-3}=4\left(đk:-\sqrt{\dfrac{3}{2}}\ge x\ge\sqrt{\dfrac{3}{2}}\right)\)

\(\Leftrightarrow2x^2-3=16\)

\(\Leftrightarrow2x^2=19\Leftrightarrow x^2=\dfrac{19}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)

SIeumvp9326
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 9 2021 lúc 14:36

a: Hàm số này đồng biến vì \(2-\sqrt{3}>0\)

b: \(f\left(2+\sqrt{3}\right)=4-3-1=0\)

\(f\left(\sqrt{3}\right)=2\sqrt{3}-3-1=2\sqrt{3}-4\)

May Hoa Cỏ
Xem chi tiết
 ๖ۣۜFunny-Ngốkツ
9 tháng 7 2018 lúc 15:07

Nếu đề bài là giải phương trình thì :

\(\sqrt{x+3}=\sqrt{x-3}\)

Đk : \(x\ge3\)

Bình phương hai vế :

\(\Rightarrow x+3=x-3\)

\(x+3-x+3=0\)

\(0x=-6\)

\(\Rightarrow\)phương trình vô nghiệm