Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tầm Tầm
Xem chi tiết
╰Nguyễn Trí Nghĩa (team...
25 tháng 11 2020 lúc 20:32

Bạn tham khảo bài này nha

Link:https://olm.vn/hoi-dap/detail/266831819020.html

Chúc bạn học tốt

Khách vãng lai đã xóa
Nguyễn Hồng Hạnh
Xem chi tiết
Kaya Renger
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

Hà Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 15:25

\(A=\left(x-y\right)\left(x^2-xy\right)-x\left(x^2+2y^2\right)\)

\(=x^3-x^2y-x^2y+xy^2-x^3-2xy^2\)

\(=-2x^2y-xy^2\)

\(=-2\cdot2^2\cdot\left(-3\right)-2\cdot\left(-3\right)^2\)

\(=8\cdot3-2\cdot9\)

=6

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 5 2017 lúc 15:48

Hoàng văn tiến
Xem chi tiết
Hoàng văn tiến
Xem chi tiết
Akai Haruma
13 tháng 12 2023 lúc 19:51

A.

$a^2+4b^2+9c^2=2ab+6bc+3ac$

$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$

$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$

$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$

$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$

$\Rightarrow a-2b=a-3c=2b-3c=0$

$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$

 

Akai Haruma
13 tháng 12 2023 lúc 19:53

B.

$x^2+2xy+6x+6y+2y^2+8=0$

$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$

$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$

$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)

$\Rightarrow -1\leq x+y+3\leq 1$

$\Rightarrow -4\leq x+y\leq -2$

$\Rightarrow 2020\leq x+y+2024\leq 2022$

$\Rightarrow A_{\min}=2020; A_{\max}=2022$

Vũ Anh Khôi
1 tháng 11 lúc 21:57

Ko thèm tick cho người ta mà đòi hỏi câu khác ✅

Phạm Minh Quang
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 11 2018 lúc 17:33

Để học tốt Toán 9 | Giải bài tập Toán 9

 

 

(Vì x > 0 nên |x| = x;   y 2   >   0 với mọi y ≠ 0)

Để học tốt Toán 9 | Giải bài tập Toán 9

 

 

(Vì x 2   ≥   0  với mọi x; và vì y < 0 nên |2y| = – 2y)

Để học tốt Toán 9 | Giải bài tập Toán 9

 

 

Để học tốt Toán 9 | Giải bài tập Toán 9

 

 

 

(Vì   x 2 y 4   =   ( x y 2 ) 2   >   0  với mọi x ≠ 0, y ≠ 0)

(Vì x < 0 nên |5x| = – 5x; y > 0 nên   | y 3 |   =   y 3 )

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 9 2019 lúc 13:06

Xét hàm  trên  ℝ  và đi đến kết quả