Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hà my
Xem chi tiết
Trương Ngọc Đức
3 tháng 7 2015 lúc 22:33

\(\sqrt{3}+2+\sqrt{7-4\sqrt{3}}=\sqrt{3}+2+\sqrt{4-2.2\sqrt{3}+3}\)

=\(\sqrt{3}+2+\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}+2+2-\sqrt{3}=4\)

=>ĐPCM

Nam Phạm An
Xem chi tiết
Upin & Ipin
12 tháng 8 2020 lúc 10:35

Ap dung \(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Ta co \(P< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2007}}-\frac{1}{\sqrt{2008}}\right)\)  

=> \(P< 2\left(1-\frac{1}{\sqrt{2008}}\right)< 2.1=2\)

Suy ra P khong phai so nguyen to

Khách vãng lai đã xóa
Lee Je Yoon
Xem chi tiết
Trần Việt Linh
28 tháng 7 2016 lúc 15:50

Bài 2

\(P=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{12+2\sqrt{12}+1}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{12}-1}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{4-\sqrt{12}}}}{\sqrt{6}-\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{\sqrt{2}\cdot\sqrt{2}\cdot\sqrt{2+\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)

\(=\frac{\sqrt{2}\cdot\sqrt{4+2\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)

\(=\frac{\sqrt{3+2\sqrt{3}+1}}{\left(\sqrt{3}+1\right)}\)

=\(\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\left(\sqrt{3}+1\right)}\)

\(=\frac{\sqrt{3}+1}{\left(\sqrt{3}+1\right)}=1\)

Vậy P là một số nguyên

Park Chanyeol
Xem chi tiết
Nguyễn Hoàng trung
Xem chi tiết
Lê Thị Thục Hiền
25 tháng 6 2021 lúc 13:04

\(Q=\sqrt{\sqrt{5}-1}\left(\sqrt{8-\sqrt{5}+2\sqrt{5\sqrt{5}-3}}-\sqrt{7-\sqrt{20}}\right)\)

\(\Rightarrow\)\(Q^2=\left(\sqrt{5}-1\right)\left(8-\sqrt{5}+2\sqrt{5\sqrt{5}-3}+7-\sqrt{20}-2\sqrt{\left(7-\sqrt{20}\right)\left(8-\sqrt{5}+2\sqrt{5\sqrt{5}-3}\right)}\right)\)

\(=\left(\sqrt{5}-1\right)\left(15-3\sqrt{5}+2\sqrt{5\sqrt{5}-3}-2\sqrt{\left(7-2\sqrt{5}\right)\left(8-\sqrt{5}\right)+2\left(7-2\sqrt{5}\right)\sqrt{5\sqrt{5}-3}}\right)\)

\(=\left(\sqrt{5}-1\right)\left(15-3\sqrt{5}+2\sqrt{5\sqrt{5}-3}-2\sqrt{66-23\sqrt{5}+2\left(7-2\sqrt{5}\right)\sqrt{5\sqrt{5}-3}}\right)\)

\(=\left(\sqrt{5}-1\right)\left(15-3\sqrt{5}+2\sqrt{5\sqrt{5}-3}-2\sqrt{\left(49-28\sqrt{5}+20\right)+2\left(7-2\sqrt{5}\right)\sqrt{5\sqrt{5}-3}+\left(5\sqrt{5}-3\right)}\right)\)

\(=\left(\sqrt{5}-1\right)\left(15-3\sqrt{5}+2\sqrt{5\sqrt{5}-3}-2\sqrt{\left(7-2\sqrt{5}\right)^2+2\left(7-2\sqrt{5}\right)\sqrt{5\sqrt{5}-3}+\left(5\sqrt{5}-3\right)}\right)\)

\(=\left(\sqrt{5}-1\right)\left(15-3\sqrt{5}+2\sqrt{5\sqrt{5}-3}-2\sqrt{\left(7-2\sqrt{5}+\sqrt{5\sqrt{5}-3}\right)^2}\right)\)

\(=\left(\sqrt{5}-1\right)\left(15-3\sqrt{5}+2\sqrt{5\sqrt{5}-3}-2\left(7-2\sqrt{5}+\sqrt{5\sqrt{5}-3}\right)\right)\)

\(=\left(\sqrt{5}-1\right)\left(1+\sqrt{5}\right)\)\(=4\)

\(\Rightarrow Q^2=4\) \(\Rightarrow Q\) nguyên 

nguyen thi mai huong
Xem chi tiết
Nguyễn Linh Chi
22 tháng 3 2020 lúc 9:09

\(A^3=\left(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\right)^3\)

\(=\left(5\sqrt{2}+7\right)-\left(5\sqrt{2}-7\right)-3\sqrt[3]{5\sqrt{2}+7}.\sqrt[3]{5\sqrt{2}-7}\left(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}+7}\right)\)

\(=14-3A\)

=> \(A^3+3A-14=0\)

<=> \(\left(A^3-8\right)+\left(3A-6\right)=0\)

<=> \(\left(A-2\right)\left(A^2+2A+7\right)=0\)

<=> A = 2 vì A^2 + 2A + 7 = (A+ 1) ^2 + 6 > 0

Do đó A là 1 số nguyên.

Khách vãng lai đã xóa
Hùng Phan Đức
Xem chi tiết
Dương Thiên Tuệ
Xem chi tiết
Dốt Bền Ngu Lâu
1 tháng 3 2018 lúc 20:22

Tui chơi bang bang trao đổi acc không

....
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 6 2021 lúc 16:45

Bạn tham khảo câu số 9:

mọi người giúp em mấy bài này với ạ =((( - Hoc24