(m+3)x-2/x+m Đồng biến trên (0 ;+ vô cùng) Nb trên (-5; -3/2]
tìm các giá trị thực của m để y=x^3−3(m+1)x^2+3m(m+2)x−3(m+1) nghich biến trên [0;1]
tìm tất cả m để y=x^4−2m.x^2−2 đồng biến (0;+∞) trên và nghịch biến trên (−∞;0)
4 giờ trước (11:29)
tìm các giá trị thực của m để y=x^3−3(m+1)x^2+3m(m+2)x−3(m+1) nghich biến trên [0;1]
tìm tất cả m để y=x^4−2m.x^2−2 đồng biến (0;+∞) trên và nghịch biến trên (−∞;0)
Ta có:
Để hàm số nghịch biến trên thì với mọi
Tức là khoảng nằm trong khoảng hai nghiệm phương trình (Do có hệ số của dương).
Ta có: y′=x2−2(m+1)x+m2+2my′=x2−2(m+1)x+m2+2m
Để hàm số y=x33−(m+1)x2+(m2+2m)x+1y=x33−(m+1)x2+(m2+2m)x+1 nghịch biến trên (2;3)(2;3) thì y′<0y′<0 với mọi x∈(2;3).x∈(2;3).
Tức là khoảng (2;3)(2;3) nằm trong khoảng hai nghiệm phương trình y′=0y′=0 (Do y′=x2−2(m+1)x+m2+2my′=x2−2(m+1)x+m2+2m có hệ số của x2x2 dương).
{Δ′>0x1≤2<3≤x2⇔⎧⎪ ⎪⎨⎪ ⎪⎩(m+1)2−m2−2m>0(x1−2)(x2−2)≤0(x1−3)(x2−3)≤0⇔⎧⎪⎨⎪⎩1>0x1x2−2(x1+x2)+4≤0x1x2−3(x1+x2)+9≤0{Δ′>0x1≤2<3≤x2⇔{(m+1)2−m2−2m>0(x1−2)(x2−2)≤0(x1−3)(x2−3)≤0⇔{1>0x1x2−2(x1+x2)+4≤0x1x2−3(x1+x2)+9≤0
⇔{m2+2m−2.2.(m+1)+4≤0m2+2m−3.2.(m+1)+9≤0⇔{m2−2m≤0m2−4m+3≤0⇔{0≤m≤21≤m≤3⇔1≤m≤2
Đạo hàm y 0 = −3x 2 + 6x + m − 1. Hàm số đã cho đồng biến trên khoảng (0; 3) khi và chỉ khi y 0 > 0, ∀x ∈ (0; 3). Hay −3x 2 + 6x + m − 1 > 0, ∀x ∈ (0; 3) ⇔ m > 3x 2 − 6x + 1, ∀x ∈ (0; 3) (∗). Xét hàm số f(x) = 3x 2 − 6x + 1 trên đoạn [0; 3] có f 0 (x) = 6x − 6; f 0 (x) = 0 ⇔ x = 1. Khi đó f(0) = 1, f(3) = 10, f(1) = −2, suy ra max [0;3] f(x) = f(3) = 10. Do đó (∗) ⇔ m > max [0;3] f(x) ⇔ m > 10. Vậy với m > 10 thì hàm số đã cho đồng biến trên khoảng (0; 3).
1) tìm khoảng đồng biến nghịch biến \(y=\dfrac{x^2-6x+10}{x-3}\)
2) hàm số \(y=\dfrac{mx-4}{x-m}\) đồng biến trên khoảng (0,\(+\infty\))
1: TXĐ: D=R\{3}
\(y=\dfrac{x^2-6x+10}{x-3}\)
=>\(y'=\dfrac{\left(x^2-6x+10\right)'\left(x-3\right)-\left(x^2-6x+10\right)\left(x-3\right)'}{\left(x-3\right)^2}\)
=>\(y'=\dfrac{\left(2x-6\right)\left(x-3\right)-\left(x^2-6x+10\right)}{\left(x-3\right)^2}\)
=>\(y'=\dfrac{2x^2-12x+18-x^2+6x-10}{\left(x-3\right)^2}\)
=>\(y'=\dfrac{x^2-6x+8}{\left(x-3\right)^2}\)
Đặt y'<=0
=>\(\dfrac{x^2-6x+8}{\left(x-3\right)^2}< =0\)
=>\(x^2-6x+8< =0\)
=>(x-2)(x-4)<=0
=>2<=x<=4
Vậy: Khoảng đồng biến là [2;3) và (3;4]
bài1 tìm m để các hàm số
a) y=(m-1)x^2 đông biến khi x>0
b) y=(3-m)x^2 nghịch biến x>0
c) y=(m^2-m)x^2 nghịch biến khi x>0
bài 2/ cho hàm số y=(m^2+1)x^2 (m là tham số ) . hỏi khi x<0 thì hàm số trên đồng biến hay nghịch biến
Bài 1:
a: Để hàm số đồng biến khi x>0 thì m-1>0
hay m>1
b: Để hàm số nghịch biến khi x>0 thì 3-m<0
=>m>3
c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0
hay 0<m<1
a, đồng biến khi m - 1 > 0 <=> m > 1
b, nghịch biến khi 3 - m < 0 <=> m > 3
c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0
Ta có m - 1 < m
\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)
Bài 2
Với x < 0 thì hàm số trên nghịch biến do m^2 + 1 > 0
Tìm m để hàm số y= x^3-(2m+1).x^2+(m^2+2m).x+1 đồng biến trên (0; dương vô cùng)
\(y'=3x^2-2\left(2m+1\right)x+m^2+2m=\left(x-m\right)\left(3x-m-2\right)\)
\(y'=0\Rightarrow\left[{}\begin{matrix}x=m\\x=\dfrac{m+2}{3}\end{matrix}\right.\)
TH1: \(m=\dfrac{m+2}{3}\Rightarrow m=1\) hàm đồng biến trên R (thỏa mãn)
TH2: \(m< \dfrac{m+2}{3}\Rightarrow m< 1\) hàm đồng biến trên khoảng đã cho khi \(\dfrac{m+2}{3}\le0\Rightarrow m\le-2\)
TH3: \(m>\dfrac{m+2}{3}\Rightarrow m>1\) hàm đồng biến trên khoảng đã cho khi \(m\le0\) (ktm)
Vậy \(\left[{}\begin{matrix}m=1\\m\le-2\end{matrix}\right.\)
1) hàm số \(y=\dfrac{x+5}{x+m}\) đồng biến trên khoảng (\(-\infty\),-8)
2) hàm số \(y=\dfrac{x+4}{x+m}\) đồng biến trên khoảng (\(-\infty\),-7)
3) hàm số \(y=\dfrac{x+2}{x+m}\) đồng biến trên khoảng (\(-\infty\),-5)
Cho hàm số y = f x xác định, liên tục và có đạo hàm trên đoạn a , b . Xét các khẳng định sau:
1. Hàm số f x đồng biến trên a ; b thì f ' x > 0 , ∀ x ∈ a ; b
2. Giả sử f a > f c > f b , ∀ x ∈ a ; b suy ra hàm số nghịch biến trên a ; b
3. Giả sử phương trình f ' x = 0 có nghiệm là x = m khi đó nếu hàm số y = f x đồng biến trên m ; b thì hàm số y = f x nghịch biến trên a , m
4. Nếu f ' x ≥ 0 , ∀ x ∈ a ; b , thì hàm số đồng biến trên a ; b
Số khẳng định đúng trong các khẳng định trên là
A. 1
B. 0
C. 3
D. 2
Đáp án A
Phương pháp:
Xét tính đúng sai của các đáp án dựa vào các kiến thức hàm số đồng biến, nghịch biến trên khoảng xác định.
Cách giải:
*2 sai vì với c 1 < c 2 bất kỳ nằm trong a ; b ta chưa thể so sánh được f c 1 và f c 2
*3 sai. Vì y' bằng 0 tại điểm đó thì chưa chắc đã đổi dấu qua điểm đó. VD hàm số y = x 3
*4 sai: Vì thiếu điều kiện tại f ' x = 0 hữu hạn điểm.VD hàm số y = 1999 có y ' = 0 ≥ 0 nhưng là hàm hằng.
Chú ý khi giải:
HS thường nhầm lẫn:
- Khẳng định số 4 vì không chú ý đến điều kiện bằng 0 tại hữu hạn điểm.
- Khẳng định số 3 vì không chú ý đến điều kiện đổi dấu qua nghiệm.
Tìm m để hàm số:
a) \(y=\sqrt{\dfrac{m-2}{m+3}}x+2021\) đồng biến trên R
b)\(y=m^2x-\left(5x+6\right)m\) nghịch biến trên R
c) \(y=\dfrac{m+5}{m-2}x-x+\sqrt{m-2}\) đồng biến trên R
Giúp với đang cần gấp!!!!!!!!!
\(a,\Leftrightarrow\sqrt{\dfrac{m-2}{m+3}}>0\)
Mà \(\sqrt{\dfrac{m-2}{m+3}}\ge0\Leftrightarrow\sqrt{\dfrac{m-2}{m+3}}\ne0\Leftrightarrow m\ne2;m\ne-3\)
\(b,y=m^2x-5mx-6m=x\left(m^2-5m\right)-6m\)
Đồng biến \(\Leftrightarrow m^2-5m>0\Leftrightarrow m\left(m-5\right)>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>5\end{matrix}\right.\)
\(c,y=x\left(\dfrac{m+5}{m-2}-1\right)+\sqrt{m-2}=\dfrac{7}{m-2}x+\sqrt{m-2}\)
Đồng biến \(\Leftrightarrow\dfrac{7}{m-2}>0\Leftrightarrow m-2>0\Leftrightarrow m>2\)