Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tín Đinh
Xem chi tiết
Tuyển Trần Thị
16 tháng 6 2017 lúc 16:14

\(\sqrt{\sqrt{3}+2+\sqrt{7-4\sqrt{3}}}=\sqrt{\sqrt{3}+2+2-\sqrt{3}}=\sqrt{4}=2\)LÀ MỘT SỐ NGUYÊN

lê thị bích ngọc
17 tháng 6 2017 lúc 12:06

\(\sqrt{\sqrt{3}+2+\left|2\right|-\sqrt{3}}\)

<=>4 là số nguyên => t là số nguyên

Nguyễn Lê Thùy Trang
Xem chi tiết
Nguyễn Lê Thùy Trang
Xem chi tiết
Cường Ngô
Xem chi tiết
Khánh Cù
Xem chi tiết
Phạm Thế Mạnh
12 tháng 12 2015 lúc 13:02

\(\sqrt{\sqrt{2\sqrt{6}+6+2\sqrt{2}+2\sqrt{3}}-\sqrt{2}-\sqrt{3}}\)
\(=\sqrt{\sqrt{\left(\sqrt{3}+\sqrt{2}+1\right)^2}-\sqrt{2}-\sqrt{3}}\)
\(=\sqrt{\sqrt{3}+\sqrt{2}+1-\sqrt{2}-\sqrt{3}}\)
\(=\sqrt{1}=1\)là số nguyên

Rộp Rộp Rộp
Xem chi tiết
Kiyotaka Ayanokoji
26 tháng 7 2020 lúc 8:32

Trả lời:

\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)

\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{12+4\sqrt{3}+1}}}}{\sqrt{6}+\sqrt{2}}\)

\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)

\(A=\frac{2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}}{\sqrt{6}+\sqrt{2}}\)

\(A=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)

\(A=\frac{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}{\sqrt{6}+\sqrt{2}}\)

\(A=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)

\(A=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)

\(A=\frac{\sqrt{2}.\sqrt{2}.\sqrt{2+\sqrt{3}}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)

\(A=\frac{\sqrt{2}.\sqrt{4+2\sqrt{3}}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)

\(A=\frac{\sqrt{2}.\sqrt{3+2\sqrt{3}+1}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)

\(A=\frac{\sqrt{2}.\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)

\(A=\frac{\sqrt{2}.\left(\sqrt{3}+1\right)}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)

\(A=1\)

Khách vãng lai đã xóa
Lê Minh Đức
Xem chi tiết
alibaba nguyễn
15 tháng 10 2016 lúc 5:39

Câu trên đề sai

\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}=\sqrt{2}\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{\sqrt{6}+\sqrt{2}}=1\)

Vậy nó là số nguyên

Lê Minh Đức
15 tháng 10 2016 lúc 10:27

Lớn hơn hoặc bằng đấy

alibaba nguyễn
15 tháng 10 2016 lúc 10:31

Giả sử a = b = 2 thì VT = 4 < VP = 16

Nhiêu đây là thấy đề sai rồi

:vvv
Xem chi tiết
Lê Thị Thục Hiền
16 tháng 6 2021 lúc 22:08

\(a>0\)

Có \(a^3=2-\sqrt{3}+3\sqrt[3]{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\left(\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2-\sqrt{3}}\right)+2+\sqrt{3}\)

\(\Leftrightarrow a^3=4+3a\) 

\(\Leftrightarrow a\left(a^2-3\right)=4\)\(\Leftrightarrow a^2-3=\dfrac{4}{a}\)

\(\Leftrightarrow\dfrac{64}{\left(a^2-3\right)^3}=a^{.3}\) 

\(\Leftrightarrow\dfrac{64}{\left(a^2-3\right)^3}-3a=a^2-3a=4\) là số nguyên.

Vi Vu
Xem chi tiết
Thắng Nguyễn
21 tháng 5 2016 lúc 16:18

$\[ E = \sqrt[3]{{\frac{{\left( {\sqrt[3]{2} + 1} \right)^3 .\left( {\sqrt[3]{2} - 1} \right)}}{3}}} = \sqrt[3]{{\frac{{\left( {\sqrt[3]{2} + 1} \right)^2 .\left( {\sqrt[3]{2}^2 - 1} \right)}}{3}}} = ... = 1 \]$$