Chứng minh rằng: \(\sqrt{3}+2+\sqrt{7-4\sqrt{3}}\) là một số nguyên
Chứng minh rằng: \(T=\sqrt{\sqrt{3}+2+\sqrt{7-4\sqrt{3}}}\)là 1 số nguyên
\(\sqrt{\sqrt{3}+2+\sqrt{7-4\sqrt{3}}}=\sqrt{\sqrt{3}+2+2-\sqrt{3}}=\sqrt{4}=2\)LÀ MỘT SỐ NGUYÊN
\(\sqrt{\sqrt{3}+2+\left|2\right|-\sqrt{3}}\)
<=>4 là số nguyên => t là số nguyên
Chứng minh rằng số \sqrt[3]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt{3}} là bình phương của một số nguyên.
Chứng minh rằng số \sqrt[3]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt{3}} là bình phương của một số nguyên
Chứng minh rằng số A = \(\frac{2\sqrt{3+\sqrt{5-13+\sqrt{48}}}}{\sqrt{6}+\sqrt{2}}\) là một số nguyên.
Chứng minh rằng M= \(\sqrt{\sqrt{2\sqrt{6}+6+2\sqrt{2}+2\sqrt{3}}-\sqrt{2}-\sqrt{3}}\) là một số nguyên
\(\sqrt{\sqrt{2\sqrt{6}+6+2\sqrt{2}+2\sqrt{3}}-\sqrt{2}-\sqrt{3}}\)
\(=\sqrt{\sqrt{\left(\sqrt{3}+\sqrt{2}+1\right)^2}-\sqrt{2}-\sqrt{3}}\)
\(=\sqrt{\sqrt{3}+\sqrt{2}+1-\sqrt{2}-\sqrt{3}}\)
\(=\sqrt{1}=1\)là số nguyên
Chứng minh rằng:
A = \(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\) là một số nguyên.
Trả lời:
\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{12+4\sqrt{3}+1}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{\sqrt{2}.\sqrt{2}.\sqrt{2+\sqrt{3}}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=\frac{\sqrt{2}.\sqrt{4+2\sqrt{3}}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=\frac{\sqrt{2}.\sqrt{3+2\sqrt{3}+1}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=\frac{\sqrt{2}.\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=\frac{\sqrt{2}.\left(\sqrt{3}+1\right)}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=1\)
CHứng minh rằng : \(\frac{a^2+b^2}{2}>=ab^3+a^3b-a^2b^2\)
Chứng mình rằng A:\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)là một số nguyên
Câu trên đề sai
\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}=\sqrt{2}\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{\sqrt{6}+\sqrt{2}}=1\)
Vậy nó là số nguyên
Giả sử a = b = 2 thì VT = 4 < VP = 16
Nhiêu đây là thấy đề sai rồi
Cho \(a=\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\)
Chứng minh rằng: \(\dfrac{64}{\left(a^2-3\right)^3}-3a\) có giá trị là số nguyên
\(a>0\)
Có \(a^3=2-\sqrt{3}+3\sqrt[3]{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\left(\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2-\sqrt{3}}\right)+2+\sqrt{3}\)
\(\Leftrightarrow a^3=4+3a\)
\(\Leftrightarrow a\left(a^2-3\right)=4\)\(\Leftrightarrow a^2-3=\dfrac{4}{a}\)
\(\Leftrightarrow\dfrac{64}{\left(a^2-3\right)^3}=a^{.3}\)
\(\Leftrightarrow\dfrac{64}{\left(a^2-3\right)^3}-3a=a^2-3a=4\) là số nguyên.
Chứng minh rằng \(\left(\sqrt[3]{2}+1\right)\sqrt[3]{\frac{\sqrt[3]{2}-1}{3}}\) là một số nguyên
$\[ E = \sqrt[3]{{\frac{{\left( {\sqrt[3]{2} + 1} \right)^3 .\left( {\sqrt[3]{2} - 1} \right)}}{3}}} = \sqrt[3]{{\frac{{\left( {\sqrt[3]{2} + 1} \right)^2 .\left( {\sqrt[3]{2}^2 - 1} \right)}}{3}}} = ... = 1 \]$$