Cho A = \(\frac{12n+5}{5n+1}\)(n thuộc Z*)
a) Tìm n để A thuộc Z
b) Tìm n để A tối giản
Cho A=12n-5/5n+1
a)Tìm n để A thuộc Z
b)Tìm n để A tối giản
cho A =\(\frac{12n-5}{5n+1}\)(n thuộc Z)
a/Tìm n để A tối giản
b/tìm n để A rút gọn được
Bài 1
Cho A = n-2/n+3 ( n thuộc Z)a, tìm n để A là phân số
b, Tìm n để a nguyên
c, tìm n để A đạt giá trị lớn nhất
Bài 2
Cho A = 10*n/5*n-3.Tìm n để
a, A là phân số
b,n thuộc Z để a nguyên
c, Tìm giá trị lớn nhất của A
Bài 3
Chứng minh rằng xảy n thuộc Z ta có
a,12n+1/n-2 là phân số tối giản
b,2n-3/n-2 là phân số tối giản
c, UWCLN của ( 2n+1;3n+1)=1
Bài 4
Tìm n thuộc Z để ( n^2-n-1) chia hết cho ( n-1)
Cho A = \(\frac{2n-5}{2n+4}\)
a. Tìm n thuộc Z để A thuộc Z
b. Tìm n thuộc Z để A tối giản
Bài 1 Cho phân số A=\(\frac{n+9}{n-6}\)
a) Tìm n thuộc Z để A thuộc Z
b) Với n thuộc Z; n>6. Tìm n để A là số tự nhiên
Với n thuộc Z; n>6. Tìm n để A là số tối giản
Cho \(A=\frac{n-5}{n+1}\) ( n thuộc Z; n khác -1). Tìm n để A tối giản
\(A=\frac{2n-5}{n+3}\) (n THUỘC Z)
a,Tìm n để A là phân số
b,Tìm n thuộc Z để A có giá trị là số nguyên
c,Tìm n thuộc Z để A rút gọn được
d,Tìm n thuộc Z để A là phân số tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
cho biểu thức a=5/n+2
a. Tìm n để A là phân số
b. Tìm n thuộc z để A thuộc z
c Tìm n thuộc z để a là phân số tối giản
bài này dễ mà
a, Để a là phân số thì
\(n+2\ne0\)\(\Leftrightarrow n\ne-2\)
b, Để \(A\in Z\)\(\Rightarrow5⋮n+2\)
Hay \(n+2\inƯ\left(5\right)\)
Ta có các \(Ư\left(5\right)\in\left\{1;-1;5;-5\right\}\)
Vậy có các trường hợp :
n + 2 = 1 => n = -1
n + 2 = -1 => n = -3
n + 2 = 5 => n = 3
n + 2 = -5 => n = -7
Vậy để \(A\in Z\Rightarrow n\in\left\{-1;-3;3;-7\right\}\)
Cho phân số A=5n+2/2n+7 (n thuộc z)
a)Tìm n thuộc z để A có giá trị bằng 7/9
b)Tìm n thuộc z để A có giá trị là số nguyên
c)Có bao nhiêu số nguyên dương n bé hơn 2016 để A là phân số tối giản ?