Cho tam giác ABC có phân giác AD.
1) Chứng minh góc ADC = góc ABC+1/2 góc BAC.
2) So sánh AC và DC.
Cho tam giác ABC có phân giác D BD 1 chứng minh góc ADB = góc ACB + 1/2 góc ABC và góc bdc bằng góc Bac + 1/2 góc ABC 2 So sánh BC và DC 3 so sánh AB và AD
1) Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt BC ở D. Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ABD = tam giác AED
b) C/m AD vuông góc với BE
c) Chứng minh góc ADB < góc ADC
2) Cho tam giác ABC có AB<AC, AD là tia phân giác của góc BAC ( D thuộc BC ). Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ADB = tam giác ADE
b) Gọi F là giao điểm của tia AB và tia ED. Chứng minh tam giác BFD = tam giác ECD
c) So sánh DB và DC
Bài 1: Cho tam giác ABC. Lấy M,N thuộc BC sao cho BM=CN. Chứng minh: AM+AN < AB+AC.
Bài 2: Cho tam giác ABC, góc B > góc C. Phân giác AD. So sánh DB và DC.
Bài 3: Cho tam giác ABC, góc B > góc C. Phân giác AD. M thuộc AD. So sánh (MB - MC) và (AB - AC).
Câu 1)
A )Ta có tam giác ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\)
Và AB = AC
Xét hai tam giác vuông BCK và CBH ta có :
BC chung
\(\widehat{KBC}=\widehat{BCH}\)
=>BCK = CBH (cạnh huyền - góc nhọn )
=>BH = CK (đpcm)
B) ta có BCK = CBH
=> \(\widehat{HBC}=\widehat{KCB}\)
=> \(\widehat{ABH}=\widehat{ACK}\)
=> tam giác OBC cân tại O
=> BO = CO
Xét tam giác ABO và tam giác ACO
AB = AC
BO = CO (cmt)
\(\widehat{ABH}=\widehat{ACK}\)
=> ABO=ACO (c-g-c)
=> \(\widehat{BAO}=\widehat{CAO}\)
=> AO là phân giác góc ABC (đpcm)
C) ta có
AI là phân giác góc ABC
Mà tam giác ABC cân tại A
=> AI vuông góc với cạnh BC (đpcm)
Cho tam giác ABC có phân giác AD.
1) Chứng minh ADC = ABC +1/2 BAC.
2) So sánh AC và DC.
Giúp tui với, mơn nhiều lắm!
Bài 1:Cho ΔABC có AB<Ac,kẻ AD là tia phân giác của góc BAC (DϵBC)
a,SO sánh góc B và góc C.Từ đó chứng minh góc ADB< góc ADC.
b,Trên cạnh AC lấy điểm AE=AD.Chứng minh góc AED= góc ABD.
Bài 2:Cho ΔABC có AC>AB,phân giác AD gọi E là một điêmt nằm giữa A và D(E khác A và D).Trên cạnh AC lấy điểm F sao cho AF=Ac
a,Chứng minh EB=EF
b,Chứng minh FC>EC-EB
c,Chứng minh AC-AB>EC-EB
1:
a: AB<AC
=>góc B>góc C
góc ADB=góc C+góc CAD
góc ADC=góc B+góc BAD
mà góc C<góc B và góc CAD=góc BAD
nên góc ADB<góc ADC
b: Sửa đề; AE=AB
Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>góc ABD=góc AED
1. Cho tam giác ABC cân tại A, có AB= 5cm, BC= 6cm, tia phân giác AD của góc BAC cắt đường trung tuyến BE của tam giác tại G. Tia CG cắt AB tại F
a. So sánh số đo của góc ABC và góc BAC
b. Chứng minh: tam giác ABD= tam giác ACD
c. Chứng minh: F là trung điểm của AB
d. Tính độ dài BG
2. Cho tam giác ABC vuông tại A có AB= 6cm, AC= 8cm. Tia phân giác của góc ABC cắt AC tại D, kẻ DE vuông góc với BC
a. Tính BC
b. Chứng minh: tam giác BDA= tam giác BDE
c. Chứng minh: AD < DC
d. Gọi K là giao điểm của AB và DE. Chứng minh: AE // KC
1/
a/ Ta có AB < BC (5cm < 6cm)
=> \(\widehat{ACB}< \widehat{A}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)
Mà \(\widehat{ACB}=\widehat{ABC}\)(\(\Delta ABC\)cân tại A)
=> \(\widehat{ABC}< \widehat{A}\)
b/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)
\(\widehat{BAD}=\widehat{DAC}\)(AD là tia phân giác \(\widehat{BAC}\))
Cạnh AD chung
=> \(\Delta ADB\)= \(\Delta ADC\)(c. g. c) (đpcm)
c/ Ta có \(\Delta ABC\)cân tại A
=> Đường cao AD cũng là đường trung tuyến của \(\Delta ABC\)
và G là giao điểm của hai đường trung tuyến AD và BE của \(\Delta ABC\)
=> CF là đường trung tuyến thứ ba của \(\Delta ABC\)
=> F là trung điểm AB (đpcm)
d/ Ta có G là giao điểm của ba đường trung tuyến AD, BE và CF của \(\Delta ABC\)
=> G là trọng tâm \(\Delta ABC\)
và D là trung điểm BC (vì AD là đường trung tuyến của \(\Delta ABC\))
=> \(BD=DC=\frac{BC}{2}=\frac{6}{2}=3\)(cm)
Áp dụng định lý Pitago vào \(\Delta ADB\)vuông tại D, ta có: AD = 4cm (tự tính)
=> \(AG=\frac{2}{3}AD=\frac{2}{3}.4=\frac{8}{3}\)(cm)
Áp dụng định lý Pitago vào \(\Delta ADC\)vuông tại D, ta có:
\(BG=\sqrt{BD^2+GD^2}\)
=> \(BG=\sqrt{3^2+\left(\frac{8}{3}\right)^2}\)
=> \(BG=\sqrt{9+\frac{64}{9}}\)
=> \(BG=\sqrt{\frac{145}{9}}\)
=> BG \(\approx\)4, 01 (cm)
Tam giác ABC có AC = 2 AB. Tia phân giác của góc A cắt BC ở D. Chứng minh rằng DC = 2 DB.Phân tích bài toán (h.1) Để so sánh DC và DB, có thể so sánh diện tích hai tam giác ADC và ADB có chung đường cao kẻ từ A. Ta so sánh được diện tích hai tam giác này vì chúng có các đường cao kẻ từ D bằng nhau, và AC = 2 AB theo đề bài cho.
Xem nội dung đầy đủ tại: https://123doc.net/document/590792-tong-hop-cac-dang-toan-thi-vao-lop-10-co-dap-an.htm
Kẻ DI vuông góc với AB, DK vuông góc với AC. Xét ΔADC và ΔADB : các đường cao DI = DK, các đáy AC = 2 AB nên SADC = 2 SADB. Vẫn xét hai tam giác trên có chung đường cao kẻ từ A đến BC, do SADC = 2 SADB nên DC = 2 DB. Giải tương tự như trên, ta chứng minh được bài toán tổng quát : Nếu AD là phân giác của ΔABC thì DB/DC = AB/AC
chúc bn học tốt nha
bài 49 : Cho tam giác ABC có góc ABC = góc ACB và có đường phân giác AD
a) Góc ADB và góc ADC là góc ngoài của những tam giác nào ? Chứng minh góc ADB = góc ADC
2) Chứng minh AB = AC
help me !!!!!!!!!!!!!!!!!!!!!!!!!!!
bài 49 : Cho tam giác ABC có góc ABC = góc ACB và có đường phân giác AD
a) Góc ADB và góc ADC là góc ngoài của những tam giác nào ? Chứng minh góc ADB = góc ADC
2) Chứng minh AB = AC
help me !!!!!!!!!!!!!!!!!!!!!!!!!!!