Cho hai số a và b chia cho m có cùng một số dư, a \(\ge\) b. Chứng minh rằng a - b chia hết cho m
Hai số tự nhiên a và b chia cho m có cùng một số dư , a > hoặc = b . chứng minh rằng a-b chia hết cho m
MÌNH GIÚP BẠN NÈ
Nếu a mà lớn hơn b hoặc bằng b thì a là số bị chia b là số chia
Theo dấu hiệu chia hết thì nếu a chia hết cho m , b chia hết cho m thì , [a-b] hoặc [a+b] đều chia hết cho m
Nhưng theo công thức [a-b]:m là phải có 2 số cùng chia hết cho m
Nhưng đây lại có 2 số a và b cùng không chia hết cho m nên ta cũng không thể biết chính xác là a-b có thể chia hết cho m hay không
Nên a-b có khả năng chia hết cho m mà cũng không có khả năng vì không có con số chính xác để tính được
Nên a-b có khả năng chia hết cho m
Hai số tự nhiên a và b chia cho m có cùng một số dư, a > hoặc = b. Chứng tỏ rằng a-b chia hết cho m
chứng minh rằng
nếu hai số tự nhiên a và b (a>b ) khi chia cho số tự nhiên m có cùng số dư thì hiệu a - b chia hết cho m
Câu 1 : Khi chia hai số tự nhiên a và b cho 3 thì cùng có số dư là r. Chứng minh rằng (a - b) chia hết cho 3.
Câu 2 : Cho hai số tự nhiên a và b. Khi chia a,b cho cùng số 7 thì có số dư là 5. Chứng minh rằng (a - b) chia hết cho 7.
Câu 3 : Cho hai số tự nhiên a và b. Khi chia a,b cho cùng số 2 thì có số dư là 1. Chứng minh rằng (a - b) chia hết cho 2
"Các bạn có thể giải 1 trong 3 câu hoặc giải tất cả tùy các bạn !!! Ai nhanh mk tik cho !!"
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$
`2A - A = - 1 + 2^42`$\\$
hay `A = -1 + 2^42`$\\$
Hai số tự nhiên a và b chia cho m có cùng một số dư , a > hoặc = b . Chứng tỏ rằng
a - b chia hết cho m
Gọi a=m.k+r ; b=m.h+r (k và h là thương của a và b cho m;n là số dư,r\(\ge0\)
=>a-b=(m.k+r)-(m.h+r)
=m.k-m.h
Vì m.k và m.h đều chia hết cho m.
=>a-b chia hết cho m(Đpcm)
hai số tự nhiên a và b chia cho m có cùng một số dư a_>b chứng tỏ rằng a-b chia hết cho 2
tìm số tự nhiên a và b chia cho m có cùng 1 số dư a >= b chứng minh rằng ( a - b ) chia hết cho m
tìm số tự nhiên a và b chia cho m có cùng 1 số dư a >= b chứng minh rằng ( a - b ) chia hết cho m
Hai số tự nhiên a và b chia cho m có cùng số dư, a> hoặc = b
Chứng tỏ rằng a - b chia hết cho m . Gúp minh giải bày này với.
Gọi số dư của a và b khi chia cho m là n.
Ta có: a=m.k+ n
b=m.h+n
=>a-b=m.k+n-(m.h+n)=m.k+n-m.h-n=(m.k-m.h)+(n-n)=m.(k-h) chia hết cho m
=>a-b chia hết cho m
=>ĐPCM
Gọi số dư của a và b khi chia cho m là n.
Ta có: a=m.k+ n
b=m.h+n
=>a-b=m.k+n-(m.h+n)=m.k+n-m.h-n=(m.k-m.h)+(n-n)=m.(k-h) chia hết cho m
=>a-b chia hết cho m
=>ĐPCM