Số dư khi 92013 chia cho 21 là
Tìm số tự nhiên a khi chia cho 16 dư 9, chia cho 28 dư 21, chia cho 24 dư 17 và a là
số nhỏ nhất có 4 chữ số.
Theo đề ra, ta có:
\(\hept{\begin{cases}\left(a+7\right)⋮28\\\left(a+7\right)⋮24\\\left(a+7\right)⋮16\end{cases}}\Rightarrow\left(a+7\right)\in BC\left(28;24;16\right)\)
Ta có:
\(28=2^2.7\)
\(24=2^3.3\)
\(16=2^4\)
\(\Rightarrow BCNN\left(16;18;24\right)=2^4.3.7=336\)
\(\Rightarrow\left(a+7\right)=BC\left(16;18;24\right)=\left\{0;336;672;1008;...\right\}\)
Mà đề ra a là số nhỏ nhất có bốn chữ số
\(a+7=1008\Rightarrow a=1008-7\Rightarrow a=1001\)
Tìm số tự nhiên nhỏ nhất khi chia cho 21 dư 15 . Khi chia cho 14 dư 8 , khi chia cho 35 dư 29
Gọi số cần tìm là \(x,\)ta có :
\(x\): 21 dư 15
\(\Rightarrow\)\(x\)= 21n + 15 (n\(\in\)N)
\(\Rightarrow\)\(2x\)= 42n + 30 = 42n + 30 = 42n + 29 + 1 : 29 dư 1
\(x\): 14 dư 8
\(\Rightarrow\)\(x\)= 14m + 8 (m \(\in\)N)
\(\Rightarrow\)\(2x\)= 28m + 16 = 28m + 15 + 1 : 15 dư 1
\(x\): 35 dư 29
\(\Rightarrow\)\(x\)= 35p + 29 (p \(\in\)N)
\(\Rightarrow\)\(2x\)= 70p + 58 = 70p + 57 + 1 : 57 dư 1
\(\Rightarrow\)\(x-1\)\(⋮\)29, 15, 57
Mà \(x\)là số tự nhiên nhỏ nhất \(\Rightarrow\)\(x-1\in BCNN\left(29,15,57\right)\)
29 = 29
15 = 3.5
57 = 3.19
\(x-1\in BCNN\left(29,15,57\right)=29.3.5.19=8265\)
\(\Rightarrow\) \(x=8265+1=8266\)
Khi chia số tự nhiên A cho 23 ta được thương là 21 và còn dư. Khi chia số A này cho 92 ta được số thương và dư 30. Tìm A.
Nếu bớt số càn tìm đi đúng bằng số dư khi chia số đó cho 23 thì được số mới chia hết cho 23
Sô mới là
23x21=483
Khi chia số mới cho 92 ta được thương là 5 và dư 23
Hiệu số dư của hai phép chia khi chia số cần tìm và số mới cho 92 là
30‐23=7
Số cần tìm là
483+7=490
Nếu bớt số càn tìm đi đúng bằng số dư khi chia số đó cho 23 thì được số mới chia hết cho 23
Sô mới là
23x21=483
Khi chia số mới cho 92 ta được thương là 5 và dư 23
Hiệu số dư của hai phép chia khi chia số cần tìm và số mới cho 92 là
30‐23=7
Số cần tìm là
483+7=490
Số dư của 9 ^ 2013 khi chia cho 21 là:
Bài toán về đồng dư thức:
9^2013 đồng dư với 9^504 (mod 21)
9^504 đồng dư với 9^126 (mod 21)
9^126 đồng dư với 15^14 (mod 21)
15^14 đồng dư với 15 (mod 21)
=> 9^2013 chia 21 dư 15
Số dư của 9^2013 khi chia cho 21 là
Bài toán về đồng dư thức :
9^2013 đồng dư với 9^504
9^504 đồng dư với 9^126
9^126 đồng dư với 15^14
15^14 đồng dư với 15
\(\Leftrightarrow\)9^2013 cia 21 dư 5
khi chia 43,19 cho 21 nếu thương là số có hai chữ số ở phần thập phân thì khi đó số dư của phép chia là mấy?
Khi chia số tự nhiên a cho 42, ta được số dư là 35. Chia số a cho 21 được thương là 11 và còn dư. Tìm số a. ( giúp mình với nhé. Thanks)
tìm số tự nhiên lớn nhất có 3 chữ số sao cho khi chia số đó cho 21 dư 5 chia cho 4 hoặc 5 đều dư 3 . số cần tìm là
Trong phép nhân a.b = c gọi:
m là số dư cua a khi cho 9, n là số dư của b khi chia cho 9,
r là số dư của tích m.n khi chia cho 9, d là số dư của c khi chia cho 9.
Điền vào ô trống rồi so sánh r và d trong mỗi trường hợp sau:
a | 78 | 64 | 72 |
b | 47 | 59 | 21 |
c | 3666 | 3776 | 1512 |
m | 6 | ||
n | 2 | ||
r | 3 | ||
d | 3 |
– Ở cột thứ hai : a = 64 ; b = 59 ; c = 3776.
Ta có : 64 = 7.9 + 1 nên 64 chia 9 dư 1 hay m = 1.
59 = 6.9 + 5 nên 59 chia 9 dư 5 hay n = 5.
Tích m.n = 5 chia 9 dư 5 nên r = 5.
c = 3776 có 3 + 7 + 7 + 6 = 23 chia 9 dư 5 nên c chia 9 dư 5 hay d = 5.
– Ở cột thứ ba: a = 72; b = 21; c = 1512.
Ta có : 72 = 8.9 chia hết cho 9 nên m = 0.
21 = 9.2 + 3 nên 21 chia 9 dư 3 hay n = 3.
Tích m.n = 0 ⋮ 9 nên r = 0.
c = 1512 có 1 + 5 + 1 + 2 = 9 ⋮ nên 1512 ⋮ 9 hay d = 0.
Do đó ta có bảng:
a | 78 | 64 | 72 |
b | 47 | 59 | 21 |
c | 3666 | 3776 | 1512 |
m | 6 | 1 | 0 |
n | 2 | 5 | 3 |
r | 3 | 5 | 0 |
d | 3 | 5 | 0 |
tìm số tự nhiên nhỏ nhất:
a,khi chia cho 5 thì dư 1, khi chia cho 7 dư 5
b,khi chia cho 21 dư 2, khi chia cho 12 dư 5