Cho \(^{\dfrac{x\sqrt{x}-1}{x+\sqrt{x}+1}+\dfrac{x-1}{\sqrt{x}-1}}\) ( Đk x ≥ 0,x≠1)
giải
cho biểu thức
P=\(\left(\dfrac{1}{\sqrt{x}-x}+\dfrac{1}{1-\sqrt{x}}\right)\):\(\dfrac{\sqrt{x}+1}{\left(1-\sqrt{x}\right)^2}\)
a) tìm đk và rút gọn
b) Tìm x để P>0
cho biểu thức P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
a.tìm đk của x để P xđ
b.rút gọn P
c.tìm giá trị của x để P<0
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
b: Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-1}{\sqrt{x}}\)
c: Để P<0 thì x-1<0
hay x<1
Kết hợp ĐKXĐ, ta được: 0<x<1
a) ĐKXĐ: \(x>0,x\ne1\)
b) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=\dfrac{x-1}{\sqrt{x}}\)
c) \(P=\dfrac{x-1}{\sqrt{x}}< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)( do \(\sqrt{x}>0\))
Cho A= \(\dfrac{\sqrt{x}+4}{{}\sqrt{x}-1}\) và B= \(\dfrac{x+2\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)} -\dfrac{3\sqrt{x}-3}{x-1}\) (đk: x>0,x≠1)
a) Rút gọn P=A.B
b) Tìm x để P(\(\sqrt{x}+1\)) ≤ 6-x
c) Tìm x để P nhận giá trị nguyên
cho bt
P=(\(\dfrac{1}{\sqrt{x}-1}\)-\(\dfrac{1}{\sqrt{x}}\)):(\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)-\(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\))
a)Tìm đk của x để P xác định
b)Rút gọn P
c)Tìm xđể P=\(\dfrac{1}{4}\)
\(a,P\) xác định \(\Leftrightarrow\left[{}\begin{matrix}x>0\\x\ne1\\x\ne4\end{matrix}\right.\)
\(b,P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\\ =\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1-x+4}\\ =\dfrac{1}{\sqrt{x}}.\dfrac{\sqrt{x}-2}{3}\\ =\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
\(c,P=\dfrac{1}{4}\Leftrightarrow\dfrac{\sqrt{x}-2}{3\sqrt{x}}=\dfrac{1}{4}\\ \Leftrightarrow\dfrac{4\left(\sqrt{x}-2\right)-3\sqrt{x}}{12\sqrt{x}}=0\\ \Leftrightarrow4\sqrt{x}-8-3\sqrt{x}=0\\ \Leftrightarrow\sqrt{x}=8\\ \Leftrightarrow x=64\left(tmdk\right)\)
Vậy \(x=64\) thì \(P=\dfrac{1}{4}\)
Giải pt 1) 2-\(\sqrt{\dfrac{x+2}{x-3}}=\sqrt{x+7}\)
2)tìm m để pt \(\dfrac{x-1}{x+1}-2\sqrt{\dfrac{x-1}{x+1}-3m-2=0}\) có nghiệm
Mk đang mắc ở chỗ đặt bằng t rồi chuyển đk của x về điều kiện của t
1) \(\Leftrightarrow4-4\sqrt{\dfrac{x+2}{x-3}}=x+7\)
\(\Leftrightarrow-4\sqrt{\dfrac{x+2}{x-3}}=x+3\)
\(\Leftrightarrow16\dfrac{x+2}{x-3}=x^2+6x+9\)
\(\Leftrightarrow16x+3=x^3+6x^2+9x-3x^2-18x-27\)
\(\Leftrightarrow x^3+3x^2-25x-59=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4,79\\x=-2,2\\x=-5,58\end{matrix}\right.\)
Vậy tập nghiệm....
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\\dfrac{x-1}{x+1}\ge3m+2\end{matrix}\right.\).
\(PT\Leftrightarrow\dfrac{x-1}{x+1}=2\sqrt{\dfrac{x-1}{x+1}-3m-2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1}{x+1}\ge0\\\left(\dfrac{x-1}{x+1}\right)^2-4\left(\dfrac{x-1}{x+1}\right)+4\left(3m+2\right)=0\left(1\right)\end{matrix}\right.\).
Ta có \(\Delta'_{\left(1\right)}=2^2-4\left(3m+2\right)=-12m-4\ge0\Leftrightarrow m\le\dfrac{-1}{3}\).
Ta chứng minh với \(m\le-\dfrac{1}{3}\) pt luôn có nghiệm.
Thật vậy, từ (1) suy ra \(\dfrac{x-1}{x+1}=\sqrt{-12m-4}+2\ge2>3m+2\).
Dễ thấy với t khác 1 thì pt \(\dfrac{x-1}{x+1}=t\) luôn có nghiệm khác 1.
Điều này chứng tỏ pt luôn có nghiệm.
Vậy \(m\le-\dfrac{1}{3}\).
P/s: Không biết có sai đoạn nào không ạ
Cho A=\(\dfrac{2x+2}{\sqrt{x}}\)+\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}\)-\(\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\) với x>0 ; x≠1
a)Rút gọn A
b)So sánh A với 5
c)Chứng minh với mọi x thỏa mãn đk thì \(\dfrac{8}{A}\) nhận một giá trị nguyên
a: \(A=\dfrac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)
\(=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)
b: \(A-5=\dfrac{2x-4\sqrt{x}+2}{\sqrt{x}}=\dfrac{2\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>=0\)
=>A>=5
A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) và \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}}\) đk : x> 0; x khác 4
Cho P = A.B
Tìm GTNN của P
Ta có: \(P=A\cdot B\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\) (ĐK x>0; x\(\ne9\))
a)Rút gọn A và B
b) Tìm các giá trị của x để giá trị biểu thức A lớn hơn giá trị biểu thức B
a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\dfrac{8}{\sqrt{x}-3}\)
b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)
\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)
Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)
\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)
- Tìm x :
\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}\right)>0\)
ĐK : x > 0 , x \(\ne\) 1