cho A = 112009 + 112008 + 112007 + ......+ 112001 + 112000
Chung to A chia het chp 5
cho x,y,p la cac so nguyen duong va p>1 sao cho moi so x^2016 va y^2017 deu chia het chp p.chung minh A=1+x+y khong chia het cho p
x^2016 chia hết cho p
suy ra x chia hết cho p (x^2016 đồng dư với x)
y^2017 chia hết cho p
suy ra y chia hết cho p(y^2017 đồng dư với y)
suy ra x+y chia hết cho p
do p>1 nên 1+x+y ko chia hết cho p
Bài 2:
1.Chứng minh rằng : 9999931999 - 555551997 chia hết cho 5
2.Chứng minh rằng : 1725 - 1321 + 244 Chia hết cho 10
3. Chứng minh rằng: 172008 - 112008 - 32008 + 1 chia hết cho 10
a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.
b)
Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)
c) Cách làm tương tự câu b.
gọi A =n ^2+n+1(nEN). chung to A ko chia het cho 2.chung to A ko chia het cho 5
A=n(n+1)+1
Vì n(n+1) chia hết cho 2
nên A=n(n+1)+1 không chia hết cho 2
chung to rang ( a + 4b ) chia het cho 5 <=> ( 4a + b ) chia het cho 5
Xét tổng : a + 4b + 4a + b = 5a + 5b = 5 ( a + b ) chia hết cho 5
Mặt khác ta có a + 4b chia hết cho 5 nên hiển nhiên 4a + b chia hết cho 5
=> đpcm
Có : \(\hept{\begin{cases}a,b\in N\\5⋮5\end{cases}}\Rightarrow5a,5b⋮5\)
=> ( 5a + 5b ) \(⋮\)5 => ( 4a + a + 4b + b ) \(⋮\)5 => ( a + 4b ) + ( 4a+b ) \(⋮\)5
*Nếu ( a + 4b ) \(⋮\)5
( a + 4b ) + ( 4a+b ) \(⋮\)5 => ( 4a + b ) \(⋮\)5
*Nếu ( 4a + b ) \(⋮\)5
( a + 4b ) + ( 4a+b ) \(⋮\)5 => ( a + 4b) \(⋮\)5
Vậy ( a + 4b ) \(⋮\)5 <=> (4a + b ) \(⋮\)5
Ta thấy : \(\hept{\begin{cases}a+4b⋮5\\\left(a+4b\right)+\left(b+4a\right)=5a+5b⋮5\end{cases}\Leftrightarrow}5a+5b-a-4b⋮5\)
\(\Rightarrow4a+b⋮5\). Ngược lại ta chứng minh tương tự.
1,cho A=3+32+33+34+......+3100.CHUNG to A chia het cho 4;A chia het cho 5;va A khong chia het cho 13;
Cho A=2+\(2^2\)+\(2^3\)+.......\(2^{60}\).Chung to rang:A chia het cho 3,A chia het cho 5,A chia het cho 7
Ta có : A = 2 + 22 + 23 + 24 + .. + 259 + 260
= (2 + 22) + (23 + 24) + .. + (259 + 260)
= 2(2 + 1) + 23(2 + 1) + ... + 259(2 + 1)
= (2 + 1)(2 + 23 + ... + 259) = 3(2 + 23 + ... + 259) \(⋮\)3
giup minh voi
A = 2 + 22 + 23 + 24 + 25 + 26 + ... + 258 + 259 + 260
= (2 + 22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260)
= 2(1 + 2 + 22) + 24(1 + 2 + 22) + ... + 258(1 + 2 + 22)
= (1 + 2 + 22)(2 + 24 + ... + 258)
= 7(2 + 24 + ... + 258) \(⋮\)7
cho P= 3x.(x-2)-2x.(x+1)+ x+3
tim x sao chp p chia het 2x+3
chứng minh
a ) 5^5 - 5^4 + 5^3 chia het cho 7
b) 3 ^n+2 - 2^n+2 + 3^n - 2^n chia het cho 10
c) 3 ^n+3 + 3^n+1 + 2^+3 + 2^n+2 chia het cho 6
d ) A = 2+2^2+2^3+....+ 2^12 chia het cho 7
g ) B= 2^35 + 2^36 + 2^37 + 2^38 chia het cho 3
k) C = 1 + 3 + 3^2 + ...+ 3^61
chung to C chia het cho 4
chung to C k chia het cho 3
h ) 5^n+2 + 3^n+2 - 3^n - 5^n chia het cho 24
gíúp mk vs ạ
Chung to rang
a, 10^5 + 35 chia het cho 9 va 5
b, 10^5 + 98 chia het cho 2 va 9
105+35=100000+35=100035
Vì tổng các chữ số của 105+35 là: 1+0+0+0+3+5=9 chia hết cho 9 nên 105+35 chia hết cho 9 (1)
Vì 105+35 có tận cùng là 5 nên 105+35 chia hết cho 5 (2)
Từ (1) và (2) ta có điều phải chứng minh
b, 105+98=100000+98=100098
Vì 105+98 có tận cùng là 8 nên 105+98 chia hết cho 2 (1)
Vì tổng các chữ số của 105+98 là: 1+0+0+0+9+8=18 chia hết cho 9 nên 105+98 chia hết cho 9 (2)
Từ (1) và (2) ta có điều phải chứng minh
a) 105 + 35 = 100000 + 35 = 100035 chia hết cho 9 và 5.
b) 105 + 98 = 100000 + 98 = 100098 chia hết cho 2 và 9.