Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Itachi Uchiha
Xem chi tiết
Thắng Nguyễn
19 tháng 5 2017 lúc 14:45

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

FL.Hermit
9 tháng 8 2020 lúc 9:26

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

Khách vãng lai đã xóa
FL.Hermit
9 tháng 8 2020 lúc 9:45

Đặt: \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)

=>     \(P=\frac{xy}{z^2+3xy}+\frac{yz}{x^2+3yz}+\frac{zx}{y^2+3zx}\)

=>     \(3P=\frac{3xy}{z^2+3xy}+\frac{3yz}{x^2+3yz}+\frac{3zx}{y^2+3zx}=1-\frac{z^2}{z^2+3xy}+1-\frac{x^2}{x^2+3yz}+1-\frac{y^2}{y^2+3zx}\)

Ta sẽ CM: \(3P\le\frac{9}{4}\)<=> Cần CM: \(\frac{x^2}{x^2+3yz}+\frac{y^2}{y^2+3zx}+\frac{z^2}{z^2+3xy}\ge\frac{3}{4}\)

Có:    \(VT\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

Ta sẽ CM: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{3}{4}\)

<=> \(4\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(4\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(x^2+y^2+z^2\ge xy+yz+zx\)

Mà đây lại là 1 BĐT luôn đúng => \(3P\le\frac{9}{4}\)=> \(P\le\frac{3}{4}\)

Vậy P max \(=\frac{3}{4}\)<=> \(a=b=c\)

Khách vãng lai đã xóa
Nguyễn Thu Huyền
Xem chi tiết
tthnew
18 tháng 8 2019 lúc 8:34

By Cauchy-Schwarz, we have:

\(VT\ge\frac{\left(a^3+b^3+c^3\right)^2}{2\left(a^3+b^3+c^3\right)+a^2b+b^2c+c^2a}\)

We will prove: \(a^2b+b^2c+c^2a\le a^3+b^3+c^3\)

\(\Leftrightarrow a^2b+b^2c+c^2a+3abc\le a^3+b^3+c^3+3abc\)

By Schur, we have: \(RHS\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(a\right)\)

So we're only need to prove: \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\ge a^2b+b^2c+c^2a+3abc\)

\(\Leftrightarrow ab^2+bc^2+ca^2\ge3abc\)

It is true by AM-GM ineq', so we have Q.E.D.

P/s: Em thử giải bài này bằng tiếng Anh (để tự luyện kĩ năng tiếng anh, tí em giải lại theo tiếng việt)

tthnew
18 tháng 8 2019 lúc 8:35

Ấy nhầm:V

By Schur, we have \(RHS\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

So we're only need to prove \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\ge a^2b+b^2c+c^2a\)

Còn lại y chang:v

tthnew
18 tháng 8 2019 lúc 8:42

Làm màu bằng tiếng anh và cái kết...:V (nãy làm nhầm, phải sửa lại đó)

Áp dụng BĐT Cauchy-Schwarz dạng Engel,ta có:

\(VT\ge\frac{\left(a^3+b^3+c^3\right)^2}{2\left(a^3+b^3+c^3\right)+a^2b+b^2c+c^2a}\)

Ta sẽ chứng minh \(a^2b+b^2c+c^2a\le a^3+b^3+c^3\) (để từ đó suy ra đpcm)

Thật vậy, thêm 3abc vào hai vế, BĐT cần chứng minh tương đương:

\(a^3+b^3+c^3+3abc\ge a^2b+b^2c+c^2a+3abc\).

Áp dụng BĐT Schur, \(VT=a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

Do đó ta chỉ cần chứng minh \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\ge a^2b+b^2c+c^2a+3abc\)

Hay \(ab^2+bc^2+ca^2\ge3abc\). BĐT này đúng theo AM-GM

Cristiano Ronaldo
Xem chi tiết
Leonah
Xem chi tiết
Phạm Bá Tâm
Xem chi tiết
Nguyễn Đăng Nhân
15 tháng 2 2022 lúc 20:00

Sử dụng bất đẳng thức Bunhiacopxki dạng phân thức và khi đó ta được:

\(\frac{a^5}{a^2+ab+b^2}+\frac{b^5}{b^2+bc+c^2}+\frac{c^5}{c^2+ca+a^2}\ge\)

\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\)

\(\Rightarrow\)Ta cần chỉ ra được:

\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\ge\frac{a^3+b^3+c^3}{3}\)

Hay: \(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)

Dễ thấy: \(a^3+b^3\ge ab\left(a+b\right);b^3+c^3\ge bc\left(b+c\right);c^3+a^3\ge ca\left(c+a\right)\)

Cộng theo vế các bất đẳng thức trên ta được:

\(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)

Vậy bất đẳng thức đã được chứng minh.

Khách vãng lai đã xóa
Phạm Đức Dũng
Xem chi tiết
Nguyễn Ý Nhi
3 tháng 2 2020 lúc 20:58

1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)

\(=ac+bc+c^2+ab\)

\(=a\left(b+c\right)+c\left(b+c\right)\)

\(=\left(b+c\right)\left(a+b\right)\)

CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)

\(b+ca=\left(b+c\right)\left(a+b\right)\)

Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)

CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}.3\)

\(\Rightarrow P\le\frac{3}{2}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c\)

Vậy /...

Khách vãng lai đã xóa
Phan Gia Huy
3 tháng 2 2020 lúc 21:37

\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)

\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)

Tương tự rồi cộng lại:

\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)

Dấu "=" xảy ra tại \(a=b=c=1\)

Khách vãng lai đã xóa
Kudo Shinichi
4 tháng 2 2020 lúc 15:00

Bài 1 : 

\(P=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)

\(P=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\frac{bc}{a\left(a+b+c\right)+bc}}\)

\(+\sqrt{\frac{ca}{b\left(a+b+c\right)+ca}}\)

\(P=\sqrt{\frac{ab}{ac+bc+c^2+ab}}+\sqrt{\frac{bc}{a^2+ab+ac+bc}}\)

\(+\sqrt{\frac{ca}{ab+b^2+bc+ca}}\)

\(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)

Áp dụng bất đẳng thức Cauchy cho 2 bô só thực không âm

\(\Rightarrow\hept{\begin{cases}\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}\\\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\le\frac{\frac{a}{a+b}+\frac{c}{b+c}}{2}\end{cases}}\)

\(\Rightarrow VT\)

\(\le\frac{\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\left(\frac{b}{a+b}+\frac{a}{a+b}\right)}{2}\)

\(\Rightarrow VT\le\frac{\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a+b}{a+b}}{2}=\frac{3}{2}\)

\(\Rightarrow P\le\frac{3}{2}\)

Vậy \(P_{max}=\frac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
Pham Van Hung
Xem chi tiết
tth_new
18 tháng 2 2020 lúc 8:03

Có: \(9=\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow3\ge ab+bc+ca\)

Từ đây: \(D=\Sigma_{cyc}\frac{ab}{\sqrt{c^2+3}}\le\Sigma_{cyc}\frac{ab}{\sqrt{c^2+ab+bc+ca}}\)

\(=\Sigma_{cyc}\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=\Sigma_{cyc}\sqrt{\frac{ab}{a+c}}.\sqrt{\frac{ab}{b+c}}\le\Sigma_{cyc}\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

\(=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa
Lê Châu Linh
Xem chi tiết
Lê Châu Linh
23 tháng 11 2017 lúc 17:06

chứng minh \(\sqrt{2x+1}\)là số vô tỉ

Nguyễn Bá Hùng
Xem chi tiết