Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
poppy Trang
Xem chi tiết
DŨNG NGUYỄN HACKER
Xem chi tiết
Nguyễn Nghĩa Đàm
24 tháng 8 2019 lúc 19:51

Có ai rảnh ko

vũ tiến đạt
24 tháng 8 2019 lúc 19:57

Toán lớp 5???

Bui Huyen
25 tháng 8 2019 lúc 10:56

\(pt\Leftrightarrow3\left(\sqrt{x-2}-1\right)-2\left(x-3\right)+\sqrt{x+6}+3=0\)

\(\Leftrightarrow\frac{3\left(x-3\right)}{\sqrt{x-2}+1}-2\left(x-3\right)+\frac{x-3}{\sqrt{x+6}-3}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{3}{\sqrt{x-2}+1}+\frac{1}{\sqrt{x+6}-3}-2\right)=0\)

Bạn giải nốt nhá

Nguyễn Thị Diễm Quỳnh
Xem chi tiết
Phương An
16 tháng 8 2017 lúc 19:41

\(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)

\(\Leftrightarrow\left(\sqrt{x^2-3x+2}-\sqrt{x-2}\right)-\left(\sqrt{x^2+2x-3}+\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\dfrac{\left(x^2-3x+2\right)-\left(x-2\right)}{\sqrt{x^2-3x+2}+\sqrt{x-2}}-\dfrac{\left(x^2+2x-3\right)-\left(x+3\right)}{\sqrt{x^2+2x-3}-\sqrt{x+3}}=0\)

\(\Leftrightarrow\dfrac{\left(x-2\right)^2}{\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x-2}}-\dfrac{\left(x-2\right)\left(x+3\right)}{\sqrt{\left(x+3\right)\left(x-1\right)}-\sqrt{x+3}}=0\)

\(\Leftrightarrow\left(x-2\right)\left[\dfrac{x-2}{\sqrt{x-2}\left(\sqrt{x-1}+1\right)}-\dfrac{x+3}{\sqrt{x+3}\left(\sqrt{x-1}-1\right)}\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\right]=0\)

Pt \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}=0\) vô no

(vì \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}< \dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\forall x\ge2\Rightarrow VT< 0\))

=> x - 2 = 0

<=> x = 2 (nhận)

Phương An
16 tháng 8 2017 lúc 19:50

\(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)

\(\Leftrightarrow\dfrac{\left(4x+1\right)-\left(3x-2\right)}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)

\(\Leftrightarrow\dfrac{x+3}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)

\(\Leftrightarrow\left(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}\right)\left(x+3\right)=0\)

TH1:

x + 3 = 0

<=> x = - 3 (loại)

TH2:

\(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}=0\)

\(\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=5\)

\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)+\left(\sqrt{3x-2}-2\right)=0\)

\(\Leftrightarrow\dfrac{4x+1-9}{\sqrt{4x+1}+3}+\dfrac{3x-2-4}{\sqrt{3x-2}+2}=0\)

\(\Leftrightarrow\dfrac{4\left(x-2\right)}{\sqrt{4x+1}+3}+\dfrac{3\left(x-2\right)}{\sqrt{3x-2}+2}=0\)

\(\Leftrightarrow\left(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}\right)\left(x-2\right)=0\)

Pt \(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}>0\forall x\ge\dfrac{2}{3}\) => vô no

=> x - 2 = 0

<=> x = 2 (nhận)

~ ~ ~

Vậy x = 2

Phương An
16 tháng 8 2017 lúc 20:07

\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)

\(\Leftrightarrow\sqrt{2\left(x^2+4x+3\right)}-\left[\left(2x+2\right)-\sqrt{x^2-1}\right]=0\)

\(\Leftrightarrow\sqrt{2\left(x+3\right)\left(x+1\right)}-\dfrac{\left(4x^2+8x+4\right)-\left(x^2-1\right)}{\sqrt{x^2-1}+2x+2}=0\)

\(\Leftrightarrow\sqrt{2\left(x+3\right)\left(x+1\right)}-\dfrac{\left(x+1\right)\left(3x+5\right)}{\sqrt{\left(x-1\right)\left(x+1\right)}+2\left(x+1\right)}=0\)

\(\Leftrightarrow\sqrt{x+1}\left[2\sqrt{x+3}-\dfrac{\sqrt{x+1}\left(3x+5\right)}{\sqrt{x+1}\left(\sqrt{x-1}+2\sqrt{x+1}\right)}\right]=0\)

\(\Leftrightarrow\sqrt{x+1}\left[2\sqrt{x+3}-\dfrac{3x+5}{\sqrt{x-1}+2\sqrt{x+1}}\right]=0\)

TH1

x + 1 = 0

<=> x = - 1 (loại)

TH2

\(2\sqrt{x+3}-\dfrac{3x+5}{\sqrt{x-1}+2\sqrt{x+1}}=0\)

\(2\sqrt{x+3}=\dfrac{4x+12}{2\sqrt{x+3}}>\dfrac{3x+5}{\sqrt{x-1}+2\sqrt{x+1}}\forall x\ge1\)

=> VT > 0

=> vô no

~ ~ ~

Vậy pt vô no

Thị Thu Thúy Lê
Xem chi tiết
阮芳邵族
Xem chi tiết
Tâm Cao
Xem chi tiết
Tam Cao Duc
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 9 2022 lúc 16:48

a/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow x+1-\sqrt{2x+2}+\sqrt{2x-1}-1=0\)

\(\Leftrightarrow\frac{x^2+2x+1-2x-2}{x+1+\sqrt{2x+2}}+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{x+1+\sqrt{2x+2}}+\frac{2}{\sqrt{2x-1}+1}\right)=0\)

\(\Rightarrow x=1\)

2/ ĐKXĐ:\(\left[{}\begin{matrix}x=0\\x\ge2\\x\le-3\end{matrix}\right.\)

- Nhận thấy \(x=0\) là 1 nghiệm

- Với \(x\ge2\):

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x-2}=2\sqrt{x+3}=\sqrt{4x+12}\)

Ta có \(VT\le\sqrt{2\left(x-1+x-2\right)}=\sqrt{4x-6}< \sqrt{4x+12}\)

\(\Rightarrow VT< VP\Rightarrow\) pt vô nghiệm

- Với \(x\le-3\)

\(\Leftrightarrow\sqrt{1-x}+\sqrt{2-x}=2\sqrt{-x-3}\)

\(\Leftrightarrow3-2x+2\sqrt{x^2-3x+2}=-4x-12\)

\(\Leftrightarrow2\sqrt{x^2-3x+2}=-2x-15\) (\(x\le-\frac{15}{2}\))

\(\Leftrightarrow4x^2-12x+8=4x^2+60x+225\)

\(\Rightarrow x=-\frac{217}{72}\left(l\right)\)

Vậy pt có nghiệm duy nhất \(x=0\)

Nguyễn Việt Lâm
17 tháng 9 2022 lúc 16:48

Bài 3: ĐKXĐ: \(-3\le x\le6\)

Đặt \(\sqrt{3+x}+\sqrt{6-x}=t\) \(\Rightarrow3\le t\le3\sqrt{2}\)

\(t^2=9+2\sqrt{\left(3+x\right)\left(6-x\right)}\Rightarrow-\sqrt{\left(3+x\right)\left(6-x\right)}=\frac{9-t^2}{2}\)

Phương trình trở thành:

\(t+\frac{9-t^2}{2}=m\Leftrightarrow-t^2+2t+9=2m\) (2)

a/ Với \(m=3\Rightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=3\end{matrix}\right.\)

\(\Rightarrow\sqrt{3+x}+\sqrt{6-x}=3\)

\(\Leftrightarrow2\sqrt{\left(3+x\right)\left(6-x\right)}=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)

b/ Xét hàm \(f\left(t\right)=-t^2+2t+9\) trên \(\left[3;3\sqrt{2}\right]\)

\(-\frac{b}{2a}=1< 3\Rightarrow\) hàm số nghịch biến trên \(\left[3;3\sqrt{2}\right]\)

\(f\left(3\right)=6\) ; \(f\left(3\sqrt{2}\right)=6\sqrt{2}-9\)

\(\Rightarrow6\sqrt{2}-9\le2m\le6\Rightarrow\frac{6\sqrt{2}-9}{2}\le m\le3\)

Bài 4 làm tương tự bài 3

nguyenquockhang
Xem chi tiết
Bùi Nguyễn Hoài Anh
Xem chi tiết
Trần Đức Thắng
25 tháng 9 2015 lúc 17:25

a) 

ĐK x >= 0  (1)

pt <=> \(\sqrt{x+1}=\frac{1}{\sqrt{x}}-\sqrt{x}\)

ĐK \(\frac{1}{\sqrt{x}}-\sqrt{x}\ge0\) => \(\frac{1-x}{\sqrt{x}}\ge0\) => \(x\le1\) (2)

pt <=> \(x+1=\frac{1}{x}+x-2\Leftrightarrow\frac{1}{x}=3\Rightarrow x=\frac{1}{3}\) ( TM (1) và (2) ) 

Vậy x = 1/3 là n* của pt 

Trần Thị Diễm Quỳnh
25 tháng 9 2015 lúc 18:52

b) ĐKXĐ: t lười lắm, c tự tìm nhe :D

đặt a=x+3

b=x-3

khi đó ptr trở thành:

\(\frac{a+2\sqrt{ab}}{2b+\sqrt{ab}}\)=\(\sqrt{2}\)

<=>\(\frac{\sqrt{a}.\left(\sqrt{a}+2\sqrt{b}\right)}{\sqrt{b}\left(\sqrt{a}+2\sqrt{b}\right)}\)=\(\sqrt{2}\)

<=>\(\frac{\sqrt{a}}{\sqrt{b}}\)=\(\sqrt{2}\)

<=>a/b=2

<=>a=2b

<=>x+3=2(x-3)

<=>x+3=2x-6

<=>x=9(chắc chắn là thỏa mãn ĐKXĐ nhưng mà sao thay vào ko đc nhỉ.phát hiện lỗi sai sửa giùm t nhe! :D)