Tìm x , y , z biết:
x : y : z = 3 : 4 : 5 và 2x^2 + 2y^2 - 3z^2 = -100
Tìm các số x, y, z biết:x : y : z = 3 : 4 : 5 và 2x2+ 2y2-3z2= -100
Tìm x, y, z biết x : y : z = 3 : 4 : 5 và 2x^2 + 2y^2 - 3z^2 = -100
`x : y : z= 3:4:5`
`=> x/3 = y/4 = z/5 <=> x^2/9 = y^2/16 = z^2/25`
Áp dụng dãy tỉ số bằng nhau:
`x^2/9 = y^2/16 = z^2/25 = (2x^2 + 2y^2 - 3z^2)/(18 + 32 - 75) = -100/-25 = 4`.
`=> {(x^2/9 = 4 => x = +-6), (y^2/16 =4 <=> x = +-8), (z^2/25 = 4 => z = +-10):}`
Vậy ...
Tìm x,y,z:
a,x:y:z=3:5:(-2) và 5x-y+3z=124
b,x/3=y/4=z/5 và 2x2+2y2-3z2= -100
c,x-1/2=y-2/3=z-3/4 và 2x+ 3y -z=50
đừng nên dựa vào trang này quá
bài trên thuộc dạng SGK , SBT mà không làm được à
a, Theo đề bài ta có :\(\frac{x}{3}\)=\(\frac{y}{5}\)=\(\frac{z}{\left(-2\right)}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{x}{3}\)=\(\frac{y}{5}\)=\(\frac{z}{\left(-2\right)}\)=\(\frac{5x}{15}\)=\(\frac{3z}{\left(-6\right)}\)=\(\frac{5x-y+3z}{15-5+\left(-6\right)}\)=\(\frac{124}{4}\)= 31 (Vì \(5x-y+3z=124\))
Suy ra : \(x=31\times3=93\)
\(y=31\times5=155\)
\(z=31\times\left(-2\right)=-62\)
Vậy .................
1, Tìm x, y, z biết x/2=y/4=z/5 và 2x²+2y²-3z²=-100
2, Tìm x, y, z biết x/2=y/3; x/4=z/9 và x³+y³+z³=-1009
Tìm x, y ,z biết:x/2=2y/3=3z/4 và x+y+z=145
\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\Rightarrow\frac{2x}{4}=\frac{2y}{3}=\frac{3z}{4}=\frac{2\left(x+y+x\right)+z}{4+3+4}=\frac{2.145+z}{11}\)
\(\Rightarrow\frac{3z}{4}=\frac{290+z}{11}\Rightarrow z=10\)
Từ đó tìm ra x,y thông qua biểu thức \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=\frac{3.10}{4}=\frac{15}{2}\)
Theo bài ra ta cs
\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}\)và \(x+y+z=145\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x+y+z}{2+\frac{3}{2}+\frac{4}{3}}=\frac{145}{\frac{29}{6}}=30\)
\(\hept{\begin{cases}\frac{x}{2}=30\\\frac{y}{\frac{3}{2}}=30\\\frac{z}{\frac{4}{3}}=30\end{cases}\Rightarrow\hept{\begin{cases}x=60\\y=45\\z=40\end{cases}}}\)
x/2=2y/3=3z/4
=> x= 4y/3 ; z= 8y/9
Co x+y+z=145
=> 4y/3+y+8y/9=145
=>12y/9+9y/9+8y/9=145
=> 29y= 145*9
=> y= (29*5*9)/29= 45
=> x=60
=> Z=40
Vay x= 60 ; y=45 ; z=40
Tìm x; y; z biết:
a) 2x/3 = 3y/4=4z/5 và x + y + z = 49
b)x-1/2=y-2/3=z-3/4 và 2x+3y-z=50
c)x\2=y/3=z/5 và xyz=810
d)x:y:z=3:4:5 và 2x^2+2y^2-3Z^2 =100
dể nhưng dài quá ,ko ai làm nỗi đâu bn ơi
mình làm câu b nhé
2x-2/4=3y-6/9=z-3/4
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
=2x-2+3y-6-z-3/4+9-5
=(2x+3y-z)-(2+6-3)/9
=50-5/9=45/9=5
mình gợi ý tới đây thui , còn lại bạn làm tiếp nhé
quynh nhu ơi dễ nhưng bạn chỉ làm 1 câu thôi
Tìm x , y , z biết : x : y : z = 3 : 4 : 5 và 2x2 + 2y2 - 3z2 = -100
Ta có: x : y : z = 3 : 4 : 5
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Mà 2x2 + 2y2 - 3z2 = -100
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
=> \(x^2=4.3=12\Rightarrow x=\sqrt{12}\)
\(y^2=4.4=16\Rightarrow x=4\)
\(z^2=4.5=20\Rightarrow z=\sqrt{20}\)
Vì x:y:z = 3:4:5
=>x/3=y/4=z/5
=>2x^2/2.3^2= 2.y^2/2.4^2=3.z^2/3.5^2
=>2.x^2/6^2=2.y^2/8^2=3.z^2/15^2
Áp dụng tính chất dãy Tỉ số = nhau. Ta có:
2.x^2+2y^2-3z^2/18+32-75= -100/-25= 4
=>x/3=4=>x= 12.
=>y/4=4=>y= 16.
=>z/5= 4=>z=20.
Vậy........
a ) x-1 / 2 = y-2 / 3 = z-3 / 4 và x - 2y + 3z = 14
b) x : y : z = 3 : 4 : 5 và 2x^2 + 2y^2 - 3z^2 = - 100
\(x-\frac{1}{2}=y-\frac{2}{3}=z-\frac{3}{4}\)va \(x-2y+3z=14\)
\(\frac{\Rightarrow\left(x-1\right)}{2}=\frac{\left(-2y+4\right)}{-6}=\frac{\left(3z-9\right)}{12}\)
\(=\frac{\left(x-1-2y+4+3z-9\right)}{\left(2-6+12\right)}\)
\(\Rightarrow-\frac{16}{8}=-2\)
\(\frac{\Rightarrow\left(y-2\right)}{2}=-2\Leftrightarrow x-1=-4\Leftrightarrow x=-3\)
\(\Rightarrow\frac{\left(y-2\right)}{3}=-2\Leftrightarrow x-1=-4\Leftrightarrow x=-3\)
\(\Rightarrow\frac{\left(x-3\right)}{4}=-2\Leftrightarrow z-3=-8\Leftrightarrow z=-5\)
\(b)\)
Theo đề ra:
\(x:y:z=3:4:5\)
\(2x^2+2y^2-3z^2=-100\)
\(\Leftrightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Leftrightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)
\(\Leftrightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)
Áp dụng tính chất dãy tỷ số bằng nhau:
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=4\Leftrightarrow x=12\\\frac{y}{4}=4\Leftrightarrow y=16\\\frac{z}{5}=4\Leftrightarrow z=20\end{cases}}\)
1) Tìm x,y,z biết
x/3=y/4=z/5 và 2x2+2y2 -3z2=-100
2) Giá trị của y, biết :
2/3x=1/2y=2/z và 3x+2y+z=1
3) Tìm x, y, z, biết
2x=y, 3y=2x và 4x-3y+2z=36
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20