\(\dfrac{x^2+5}{3x^2-6x+3}\).\(\dfrac{7x+35}{6x-6}\)
\(\dfrac{x^2+5x}{3x^2-6x+3}\):\(\dfrac{7x+35}{6x-6}\)
\(đk:x\ne1\\ \dfrac{x^2+5x}{3x^2-6x+3}:\dfrac{7x+35}{6x-6}\\ =\dfrac{x\left(x+5\right)}{3\left(x^2-2x+1\right)}:\dfrac{7\left(x+5\right)}{6\left(x-1\right)}\\ =\dfrac{x\left(x+5\right)}{3\left(x-1\right)^2}\times\dfrac{6\left(x-1\right)}{7\left(x+5\right)}\\ =\dfrac{2x}{7\left(x-1\right)}\)
a, \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
b, \(\dfrac{x+2}{x-3}-\dfrac{x^2+6}{x^2-3x}\)
c, \(\dfrac{1}{9x-18}+\dfrac{16-7x}{72-18x}+\dfrac{5}{12x-24}\)
a.\(\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}=\dfrac{3x-x+6}{2x\left(x+3\right)}=\dfrac{2x+6}{2x\left(x+3\right)}=\dfrac{1}{x}\)
Giải phương trình:
a) \(\dfrac{3x-2}{x^2-12x+20}-\dfrac{4x+3}{x^2+6x-16}=\dfrac{7x+11}{x^2-2x-80}\)
b) \(\dfrac{2x-5}{x^2+5x-36}-\dfrac{x-6}{x^2+3x-28}=\dfrac{x+8}{x^2+16x+63}\)
a: \(\Leftrightarrow\dfrac{3x-2}{\left(x-2\right)\left(x-10\right)}-\dfrac{4x+3}{\left(x+8\right)\left(x-2\right)}=\dfrac{8x+11}{\left(x-10\right)\left(x+8\right)}\)
=>(3x-2)(x+8)-(4x+3)(x-10)=(8x+11)(x-2)
=>3x^2+24x-2x-16-4x^2+40x-3x+30=8x^2-16x+11x-22
=>-x^2+59x+14-8x^2+5x+22=0
=>-9x^2+54x+36=0
=>x^2-6x-4=0
=>\(x=3\pm\sqrt{13}\)
b: \(\Leftrightarrow\dfrac{2x-5}{\left(x+9\right)\left(x-4\right)}-\dfrac{x-6}{\left(x+7\right)\left(x-4\right)}=\dfrac{x+8}{\left(x+9\right)\left(x+7\right)}\)
=>(2x-5)(x+7)-(x-6)(x+9)=(x+8)(x-4)
=>2x^2+14x-5x-35-x^2-9x+6x+54=x^2+4x-32
=>x^2+6x+19=x^2+4x-32
=>2x=-51
=>x=-51/2
Gi ải các phương trình sau
a)x-3(2x-6)=21-(5x+3)
b)(x-2)(x+2)-(x-1)2=2(x+1)
c)\(\dfrac{9x+4}{6}\)=1-\(\dfrac{3x-5}{9}\)
d)\(\dfrac{6x+1}{x^2-7x+10}\)+\(\dfrac{5}{x-2}\)=\(\dfrac{3}{x-5}\)
a: \(x-3\left(2x-6\right)=21-\left(5x+3\right)\)
=>\(x-6x+18=21-5x-3\)
=>18=18(luôn đúng)
=>\(x\in R\)
b: \(\left(x-2\right)\left(x+2\right)-\left(x-1\right)^2=2\left(x+1\right)\)
=>\(x^2-4-x^2+2x-1=2x+2\)
=>2x-5=2x+2
=>-7=0(vô lý)
=>\(x\in\varnothing\)
c: \(\dfrac{9x+4}{6}=1-\dfrac{3x-5}{9}\)
=>\(\dfrac{3\left(9x+4\right)}{18}=\dfrac{18}{18}-\dfrac{2\left(3x-5\right)}{18}\)
=>3(9x+4)=18-2(3x-5)
=>27x+12=18-6x+10
=>27x+12=-6x+28
=>33x=16
=>\(x=\dfrac{16}{33}\left(nhận\right)\)
d: ĐKXĐ: \(x\notin\left\{2;5\right\}\)
\(\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)
=>\(\dfrac{6x+1}{\left(x-2\right)\left(x-5\right)}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)
=>\(6x+1+5\left(x-5\right)=3\left(x-2\right)\)
=>6x+1+5x-25=3x-6
=>11x-24=3x-6
=>8x=18
=>\(x=\dfrac{9}{4}\left(nhận\right)\)
a: x−3(2x−6)=21−(5x+3)
=>x−6x+18=21−5x−3
=>18=18(luôn đúng)
=>x∈R
b: (x−2)(x+2)−(x−1)2=2(x+1)
=>x2−4−x2+2x−1=2x+2
=>2x-5=2x+2
=>-7=0(vô lý)
=>x∈∅
c: 3(9x+4)18=1818−2(3x−5)18
=>3(9x+4)=18-2(3x-5)
=>27x+12=18-6x+10
=>27x+12=-6x+28
=>33x=16
=>6x+1x2−7x+10+5x−2=3x−5
=>x=94(nhận)
1. Thực hiện phép tính:
a.\(\dfrac{x}{x-3}\)+ \(\dfrac{9-6x}{x^{2^{ }}-3x}\)
b. \(\dfrac{6x^2}{6x-1}\)- \(\dfrac{x}{6x-1}\)
c. \(\dfrac{2}{x-y}\)+\(\dfrac{3}{x+y}\)+\(\dfrac{4x}{y^{2^{ }}-x^2}\)
d. \(\dfrac{x+1}{x^{2^{ }}-2x+1}\): \(\dfrac{x+1}{5x-5}\)
e. \(\dfrac{7x+6}{2x\left(x+7\right)}\) - \(\dfrac{3x+6}{2x^2+14x}\)
f. \(\dfrac{3x+21}{x^2-9}\)+\(\dfrac{2}{x+3}\)+\(\dfrac{3}{3-x}\)
g. (\(\dfrac{x}{x^2-36}\) - \(\dfrac{x-6}{x^{2^{ }}+6x}\)) : \(\dfrac{2x-6}{x^2+6x}\) + \(\dfrac{x}{6-x}\)
a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
b: \(=\dfrac{6x^2-x}{6x-1}=x\)
c: \(=\dfrac{2x+2y+3x-3y-4x}{\left(x-y\right)\left(x+y\right)}=\dfrac{x-y}{\left(x-y\right)\left(x+y\right)}=\dfrac{1}{x+y}\)
d: \(=\dfrac{x+1}{\left(x-1\right)^2}\cdot\dfrac{5\left(x-1\right)}{x+1}=\dfrac{5}{x-1}\)
f: \(=\dfrac{3x+21+2x-6-3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x+6}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\)
Giải các phương trình sau:
\(e.\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
\(f.\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)
\(g.\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\)
\(h.\dfrac{8}{x-8}+\dfrac{11}{x-11}=\dfrac{9}{x-9}+\dfrac{10}{x-10}\)
e) ĐK : \(\left\{{}\begin{matrix}1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x\ne-1\\3x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)
\(\Leftrightarrow12\left(1+3x\right)\left(1-3x\right)=\left(1-3x\right)\left(1+3x\right)\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)
\(\Leftrightarrow12=\left(-6x\right).2\Leftrightarrow6=-6x\)
\(\Leftrightarrow x=-1\left(TM\right)\)
giải các phương trình sau:
a.2x + 3 = 7x - 7
b. \(\dfrac{x}{x+2}+\dfrac{x-1}{x-2}=\dfrac{2x^2+x}{x^2-4}\)
c.|x-1|=1
d.6x - 2 = 2x + 10
e. \(\dfrac{x}{2}+\dfrac{x+1}{3}=\dfrac{5}{2}\)
f.|x-1|=x+2
g.9x - 6 = 3x+12
h.x(x-1)+3(x-1)=0
i.\(\dfrac{7}{x}+\dfrac{2}{x+1}=\dfrac{x+23}{x\left(x+1\right)}\)
j.8x - 3=6x +9
k. |x-1|-4=5
l.\(\dfrac{x-5}{x^2-16}+\dfrac{3}{x+4}=\dfrac{7}{x-4}\)
a)2x + 3 = 7x - 7
(=)2x-7x=-7-3
(=)-5x=-10
(=)x=-2
Vậy S={2}
Giai bptr sau
\(\dfrac{6x+5}{4}-\dfrac{x-3}{2}< \dfrac{6x-1}{3}+\dfrac{7x-1}{12}\)
Phương pháp 3. Sử dụng phép đặt ẩn phụ
a \(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
b \(x^2-6x+9=4\sqrt{6-6x+x^2}\)
c \(\sqrt{\dfrac{x^2+x+1}{x}}+\sqrt{\dfrac{x}{x^2+x+1}}=\dfrac{7}{4}\)
d \(x^2+8x-3=2\sqrt{x\left(8+x\right)}\)
a) ĐK: \(x^2+7x+7\ge0\)
Đặt \(a=\sqrt{x^2+7x+7}\) \(\left(a\ge0\right)\)
PT \(\Rightarrow3a^2-3+2a=2\) \(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x^2+7x+7=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) (Thỏa mãn)
Vậy ...
b) ĐK: \(x^2-6x+6\ge0\)
Đặt \(a=\sqrt{x^2-6x+6}\) \(\left(a\ge0\right)\)
PT \(\Rightarrow a^2+3=4a\) \(\Leftrightarrow\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\) (Thỏa mãn)
+) Với \(a=3\) \(\Rightarrow x^2-6x+6=9\) \(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{3}\\x=3-2\sqrt{3}\end{matrix}\right.\) (Thỏa mãn)
+) Với \(a=1\) \(\Rightarrow x^2-6x+6=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\) (Thỏa mãn)
Vậy ...
c)C1: Áp dụng bđt AM-GM \(\Rightarrow VT\ge2>\dfrac{7}{4}\)
=> Dấu = ko xảy ra hay pt vô nghiệm
C2: Đk:\(x>0\)
Đặt \(a=\sqrt{\dfrac{x^2+x+1}{x}}\left(a>0\right)\) \(\Rightarrow\dfrac{1}{a}=\sqrt{\dfrac{x}{x^2+x+1}}\)
Pttt: \(a+\dfrac{1}{a}=\dfrac{7}{4}\Leftrightarrow4a^2-7a+4=0\)
\(\Delta =-15<0 \) => Pt vô nghiệm
Vậy...
d) Đk: \(x\le-8;x\ge0\)
Đặt \(t=\sqrt{x\left(8+x\right)}\left(t\ge0\right)\)
Pttt: \(t^2-3=2t\Leftrightarrow t^2-2t-3=0\Leftrightarrow\left[{}\begin{matrix}t=3\left(tm\right)\\t=-1\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x\left(8+x\right)}=3\Leftrightarrow x^2+8x-9=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-9\end{matrix}\right.\) (tm)
Vậy...