So sánh :
A = 2011^2011 + 1 / 2011^2012 + 1 và B = 2011^2012 + 1 / 2011^2013 + 1
so sánh A và B biết:
A=2010/2011+2011/2012+2012/2013
B=2010+2011+2012/2011+2012+2013
So sánh :A= 2011^2012+ 4 / 2011^2012-1 và B=2011^2012+1/2011^2012-4
so sánh A=2013^2010+1/2013^2011+1 và B=2013^2011-2/2013^2012-2
so sánh :A= 2010/2011+2011/2012+2012/2013; B= 1/2+1/4+...+1/17
a = 2010/2011 + 2011/2012 + 2012/2013 so sánh a và b
b = 2010/2011 + 2011/2012 + 2012/2013
So sánh A và B cho biết:A=2011^2012-2011^2011;B=2011^2013-2011^2012
A=2011^2012-2011^2011= 2011^2011 * 2011 -2011^2011= 2011^2011 *(2011-1)= 2011^2011 *2010
B=2011^2013-2011^2012=2011^2012*2011- 2011^2012= 2011^2012 *(2011-1) = 2011^2012 *2010
vì 2011^2011*2010 < 2011^2012*2010 nên A<B
Ta có : 2011^2013 x M = (2010^2012 x 2011 + 2011^2013)^2013 > (2010^2013 + 2011^2013)^2013 = N x (2010^2013 + 2011^2013)
Do đó: 2011^2013 x M > N x (2010^2013 + 2011^2013)
<=> M > N x [(2010/2011)^2013 + 1] ==> M > N (điều phải chứng minh)
So sánh : A = 2011+2012/2012+2013 và B = 2011/2012+2012/2013
Ta có :
B = \(\dfrac{2011}{2012}\) + \(\dfrac{2012}{2013}\) .
\(\dfrac{2011}{2012}\) > \(\dfrac{2011}{2012+2013}\) .
\(\dfrac{2012}{2013}\) > \(\dfrac{2012}{2012+2013}\) .
\(\Rightarrow\) A < B .
Ta có :
B = 2012201320122013 .
20112012+201320112012+2013 .
20122012+201320122012+2013 .
⇒⇒ A < B .
Giải:
Ta có:
\(A=\dfrac{2011+2012}{2012+2013}\)
\(A=\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}\)
Vì \(\dfrac{2011}{2012}>\dfrac{2011}{2012+2013}\)
\(\dfrac{2012}{2013}>\dfrac{2012}{2012+2013}\)
\(\Rightarrow A< B\)
so sánh A = 2013^2010+1/2013^2011+1 và B = 2013^2011 -2 /2013^2012-2
-Ta có: $B<1\Rightarrow B<\frac{2013^{2011}-2+2015}{2013^{2012}-2+2015}=\frac{2013^{2011}+2013}{2013^{2012}+2013}=\frac{2013(2013^{2010}+1)}{2013(2013^{2011}+1)}=\frac{2013^{2010}+1}{2013^{2011}+1}=A$
-Vậy: B<A
So sánh A và B:
A=2010/2011+2011/2012+2012/2013
B=1/3+1/4+1/5+....+1/17.