3x(4x-5)
Bài 1: Rút Gọn
a)(x+7)(x-7)-x2
b)(5x-1)(5x+1)-(25x2+1)
c)(4x+1)(4x-1)-(4x-1)2
d)(3x-5)2-(3x+5)(3x-5)
a) \(=x^2-49-x^2\) \(=-49\)
b) \(=25x^2-1-25x^2-1\) \(=-2\)
c) \(=16x^2-1-16x^2+8x-1\) \(=8x-2\)
d) \(=9x^2-30x+25-9x^2+25\) \(=50-30x\)
rút gọn biểu thức
a,A=(4x-5)2+(4x+5)2+2.(5+4x)(5-4x)
b,B=(3x-2)2(3x+2)2-2(2x+3)(2x-3)
a: A=(4x+5)^2-2*(4x+5)(4x-5)+(4x-5)^2
=(4x+5-4x+5)^2
=10^2=100
b: B=(3x-2)^2*(3x+2)^2-2(2x+3)(2x-3)
=(9x^2-4)^2-2(4x^2-9)
=81x^4-72x^2+16-8x^2+18
=81x^4-80x^2+34
\(a,A=\left(4x-5\right)^2+\left(4x+5\right)^2+2\left(5+4x\right)\left(5-4x\right)\)
\(=\left(5-4x\right)^2 +2\left(5-4x\right)\left(4x+5\right)+\left(4x+5\right)^2\)
\(=\left(5-4x+4x+5\right)^2\)
\(=10^2\)
\(=100\)
\(b,B=\left(3x-2\right)^2\left(3x+2\right)^2-2\left(2x+3\right)\left(2x-3\right)\)
\(=\left(9x^2-4\right)^2-2\left(4x^2-9\right)\)
\(=81x^4-72x^2+16-8x^2+18\)
\(=81x^4-80x^2+34\)
#\(Urushi\)
Rút gọn biểu thức sau (1,0đ): (4x - 5)2 + 2(4x - 5)(3x + 5) + (3x + 5)2.
\(=\left(4x-5+3x+5\right)^2=\left(7x\right)^2=49x^2\)
tìm x , biết
a. 4x(x-5)-(x-1)(4x-3)=5
b. (3x-4)(x-2) = 3x(x-9)-3
c.2(x+3)-x2 -3x=0
d. 8x3-50x=0
e. (4x-30)2-3x(3-4x)
\(a,\Rightarrow4x^2-20x-4x^2+3x+4x-3=5\\ \Rightarrow-13x=8\Rightarrow x=-\dfrac{8}{13}\\ b,\Rightarrow3x^2-10x+8-3x^2+27x=-3\\ \Rightarrow17x=-11\Rightarrow x=-\dfrac{11}{17}\\ c,\Rightarrow\left(x+3\right)\left(2-x\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ d,\Rightarrow2x\left(4x^2-25\right)=0\\ \Rightarrow2x\left(2x-5\right)\left(2x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\\ e,Sửa:\left(4x-3\right)^2-3x\left(3-4x\right)=0\\ \Rightarrow\left(4x-3\right)^2+3x\left(4x-3\right)=0\\ \Rightarrow\left(4x-3\right)\left(7x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)
a.
4x(x-5) - (x-1)(4x-3)-5=0
4x^2-20x-4x^2+3x+4x+3=0
(4x^2-4x^2)+(-20x+3x+4x)+3=0
13x+3 = 0
13x=-3
x=-3/13
b,
(3x-4)(x-2)-3x(x-9)+3=0
3x^2-6x-4x+8 - 3x^2+27x+3=0
(3x^2-3x^2)+(-6x-4x+27x)+(8+3)=0
17x+11=0
17x=-11
x=-11/17
c, 2(x+3)-x^2-3x=0
2(x+3) - x(x+3)=0
(x+3)(2-x)=0
TH1: x+3 = 0; x=-3
TH2: 2-x=0;x=2
Tìm min
a)|x+3|+|3x+5|+|4x+1|+5x+2
b)|2x+3|+|3x+4|+|4x+5|-6x+5
Tìm min
a)|x+3|+|3x+5|+|4x+1|+5x+2
b)|2x+3|+|3x+4|+|4x+5|-6x+5
Bài đã đăng rồi bạn lưu ý không đăng lại làm loãng box toán.
1)6x-8=3x+1
2)12-10x=25-30x
3)3(2x+3)-2(4x-5)=10x+21
4)5(5x-3)-3(2x-4)11-5x
5)4(2-3x)-5(1-2x)=4-6x
6)8(4x-3)-3(2-3x)=13-40x
7)10x-5(1-4x)=5x-11
8)-3(3-4x)-5(4-3x)=12x-50
9)-2(20x-3)-3(4x-5)=9-2(2x-3)
10)-5(2-3x)+3(5-2x)=3x+3(3-5x)
1)6x-8=3x+1
6x-3x=1+8
3x=9
x=3
Vậy x=3
2: 12-10x=25-30x
=>20x=13
=>x=13/20
3: \(3\left(2x+3\right)-2\left(4x-5\right)=10x+21\)
=>6x+9-8x+10=10x+21
=>10x+21=-2x+19
=>12x=-2
=>x=-1/6
4: \(\Leftrightarrow25x-15-6x+12=11-5x\)
=>19x-3=11-5x
=>24x=14
=>x=7/12
5: \(\Leftrightarrow8-12x-5+10x=4-6x\)
=>4-6x=-2x+3
=>-4x=-1
=>x=1/4
6: \(\Leftrightarrow32x-24-6+9x=13-40x\)
=>41x-30=13-40x
=>81x=43
=>x=43/81
7: \(\Leftrightarrow10x-5+20x=5x-11\)
=>30x-5=5x-11
=>25x=-6
=>x=-6/25
câu1: giải phương trình
a) 2x-3=3(x+1)
3x-3=2(x+1)
b)(3x+2)(4x-5)=0
(3x+5)(4x-2)=0
c) |x-7|=2x+3
|x-4|=5-3x
a) \(2\chi-3=3\left(\chi+1\right)\)
\(\Leftrightarrow2\chi-3=3\chi+3\)
\(\Leftrightarrow2\chi-3\chi=3+3\)
\(\Leftrightarrow\chi=-6\)
Vậy phương trình có tập nghiệm S= \(\left\{-6\right\}\)
\(3\chi-3=2\left(\chi+1\right)\)
\(\Leftrightarrow3\chi-3=2\chi+2\)
\(\Leftrightarrow3\chi-2\chi=2+3\)
\(\Leftrightarrow\chi=5\)
Vậy phương trình có tập nghiệm S= \(\left\{5\right\}\)
b) \(\left(3\chi+2\right)\left(4\chi-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3\chi+2=0\\4\chi-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3\chi=-2\\4\chi=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\chi=\dfrac{-2}{3}\\\chi=\dfrac{5}{4}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S= \(\left\{\dfrac{-2}{3};\dfrac{5}{4}\right\}\)
\(\left(3\chi+5\right)\left(4\chi-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3\chi+5=0\\4\chi-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3\chi=-5\\4\chi=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\chi=\dfrac{-5}{3}\\\chi=\dfrac{1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S= \(\left\{\dfrac{-5}{3};\dfrac{1}{2}\right\}\)
c) \(\left|\chi-7\right|=2\chi+3\)
Trường hợp 1:
Nếu \(\chi-7\ge0\Leftrightarrow\chi\ge7\)
Khi đó:\(\left|\chi-7\right|=2\chi+3\)
\(\Leftrightarrow\chi-7=2\chi+3\)
\(\Leftrightarrow\chi-2\chi=3+7\)
\(\Leftrightarrow\chi=-10\) (KTMĐK)
Trường hợp 2:
Nếu \(\chi-7\le0\Leftrightarrow\chi\le7\)
Khi đó: \(\left|\chi-7\right|=2\chi+3\)
\(\Leftrightarrow-\chi+7=2\chi+3\)
\(\Leftrightarrow-\chi-2\chi=3-7\)
\(\Leftrightarrow-3\chi=-4\)
\(\Leftrightarrow\chi=\dfrac{4}{3}\)(TMĐK)
Vậy phương trình có tập nghiệm S=\(\left\{\dfrac{4}{3}\right\}\)
\(\left|\chi-4\right|=5-3\chi\)
Trường hợp 1:
Nếu \(\chi-4\ge0\Leftrightarrow\chi\ge4\)
Khi đó: \(\left|\chi-4\right|=5-3\chi\)
\(\Leftrightarrow\chi-4=5-3\chi\)
\(\Leftrightarrow\chi+3\chi=5+4\)
\(\Leftrightarrow4\chi=9\)
\(\Leftrightarrow\chi=\dfrac{9}{4}\)(KTMĐK)
Trường hợp 2: Nếu \(\chi-4\le0\Leftrightarrow\chi\le4\)
Khi đó: \(\left|\chi-4\right|=5-3\chi\)
\(\Leftrightarrow-\chi+4=5-3\chi\)
\(\Leftrightarrow-\chi+3\chi=5-4\)
\(\Leftrightarrow2\chi=1\)
\(\Leftrightarrow\chi=\dfrac{1}{2}\)(TMĐK)
Vậy phương trình có tập nghiệm S=\(\left\{\dfrac{1}{2}\right\}\)
tìm x biet (4x-3)(3x+2)-(3x+5)(4x-1)=3x
\(\left(4x-3\right)\left(3x+2\right)-\left(3x+5\right)\left(4x-1\right)=3x\)
\(\Leftrightarrow12x^2+8x-9x-6-\left(12x^2-3x+20x-5\right)=3x\)
\(\Leftrightarrow12x^2+8x-9x-6-12x^2+3x-20x+5=3x\)
\(\Leftrightarrow-21x-1=0\)
\(\Leftrightarrow x=-\dfrac{1}{21}\)
\(\left(4x-3\right)\left(3x+2\right)-\left(3x+5\right)\left(4x-1\right)=3x\)
\(\Leftrightarrow\)\(12x^2+8x-9x-6-12x^2+3x-20x+5-3x=0\)
\(\Leftrightarrow-21x-1=0\)
\(\Rightarrow x=-\dfrac{1}{21}\)
Tìm x biết
(6-3x)^2-2(3x-6)=0(2x+5)^3-(2x+5)=0(6-4x)^3-(6-4x)=0(5-4x)^2-(4x+5)=0