Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn danh bảo
Xem chi tiết
Minh Hiếu
Xem chi tiết
Trên con đường thành côn...
7 tháng 1 2022 lúc 20:36

Bài 2: Ta có:

\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ

\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).

Thay vào tìm được y...

Trên con đường thành côn...
7 tháng 1 2022 lúc 21:12

Lúc nãy bận thi online nên giờ mới làm tiếp được, bạn thông cảm.

Bài 4:

Do p; q; r là các SNT nên \(p^q+q^p>2^2+2^2=8\Rightarrow r>8\) nên r là SNT lẻ

Mà r lẻ thì trong 2 số \(p^q;q^p\) phải có 1 số lẻ, một số chẵn.

Do vai trò p; q như nhau nên không mất tính tổng quát ta giả sử p lẻ, q chẵn

\(\Rightarrow q=2\). Lúc này ta có:

\(p^2+2^p=r\)

+Xét p=3\(\Rightarrow p^2+2^p=r=17\left(tm\right)\) (Do p lẻ nên loại TH p=2)

+Xét p>3. Ta có:

\(\left\{{}\begin{matrix}p^2\equiv1\left(mod3\right)\\2^p\equiv\left(-1\right)^p\equiv-1\left(mod3\right)\end{matrix}\right.\)

\(\Rightarrow p^2+2^p\equiv1+\left(-1\right)\equiv0\left(mod3\right)\)

\(\Rightarrow\left(p^2+2^p\right)⋮3\) mà \(p^2+2^p>3\) nên là hợp số

\(\Rightarrow r\) là hợp số, không phải SNT, loại.

Vậy ta có \(\left(p;q;r\right)\in\left\{\left(3;2;17\right);\left(2;3;17\right)\right\}\) tm đề bài

 

Trên con đường thành côn...
7 tháng 1 2022 lúc 21:22

Bài 6: Ta có 1SCP lẻ chia cho 4 dư 1.

Nếu 2n-1 là SCP thì ta có

\(2n-1\equiv1\left(mod4\right)\Leftrightarrow2n+1\equiv3\left(mod4\right)\)

Do đó 2n+1 không là SCP

\(\Rightarrowđpcm\)

Phan Minh Sang
Xem chi tiết
Nguyễn Quang Đức
Xem chi tiết
Trần Minh Hoàng
30 tháng 1 2021 lúc 15:37

Ta có: \(\left(2x+3y\right)^2< \left(2x+3y\right)^2+5x+5y+1< \left(2x+3y+2\right)^2\).

Do đó để \(\left(2x+3y\right)^2+5x+5y+1\) là số chính phương thì \(\left(2x+3y\right)^2+5x+5y+1=\left(2x+3y+1\right)^2\Leftrightarrow x=y\).

Vậy x = y

MC Six paths tails
Xem chi tiết
Phùng Thanh Khôi
26 tháng 9 2021 lúc 20:27

Mode 5 3 trên máy tính Casio fx-570 :

a) a=1,b=-2,c=-4

b) a=1,b=-2,c=7 

 

 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 4 2018 lúc 8:04

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì (x; y) = (11; 6) là nghiệm của phương trình 3mx – 5y = 2m +1 nên ta có:

3m.11 – 5.6 = 2m + 1

⇔ 33m – 30 = 2m + 1 ⇔ 31m = 31 ⇔ m = 1

Vậy với m = 1 thì nghiệm của  x + 1 3 - y + 2 4 = 2 x - y 5 x - 3 4 - y - 3 3 = 2 y - x  cũng là nghiệm của phương trình 3mx – 5y = 2m + 1.

Trần Hà Phương
Xem chi tiết
Minh Hiếu
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 9 2021 lúc 17:31

2.

a.

\(x^2+3x=k^2\)

\(\Leftrightarrow4x^2+12x=4k^2\)

\(\Leftrightarrow4x^2+12x+9=4k^2+9\)

\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)

\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)

\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)

2x+3-2k-9-3-1139
2x+3+2k-1-3-9931
x-4-3-4101
 nhậnnhậnnhậnnhậnnhậnnhận

Vậy \(x=\left\{-4;-3;0;1\right\}\)

b. Tương tự

\(x^2+x+6=k^2\)

\(\Leftrightarrow4x^2+4x+24=4k^2\)

\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)

\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)

Em tự lập bảng tương tự câu trên

Nguyễn Việt Lâm
7 tháng 9 2021 lúc 17:24

1.

\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)

\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)

\(\Leftrightarrow-64y^2+16y+16\ge0\)

\(\Leftrightarrow\left(8y-1\right)^2\le17\)

\(\Rightarrow\left(8y-1\right)^2\le16\)

\(\Rightarrow-4\le8y-1\le4\)

\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)

\(\Rightarrow y=0\)

Thế vào pt ban đầu:

\(\Rightarrow x^2=1\Rightarrow x=\pm1\)

Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)

Hoàng Quý Thành Danh
Xem chi tiết